
© DataEase International Ltd

1

DQL Programmer's Guide
Chapter I : Basic Concepts
Copyright and Trademarks .. 10
Acknowledgements .. 11
Welcome to the DQL Programmer's Guide 12

How this Book Is Organized .. 12
The Basic DQL Vocabulary .. 14

Commands .. 14
Operators ... 15
Functions ... 16
Database Objects .. 17
Relationships ... 17
Symbols ... 18
Variables .. 18
Values .. 18
Comments ... 19

Getting Help on DQL Keywords and Concepts 20
General Steps for Creating a DQL Procedure 21
Starting a New DQL Procedure ... 22
Creating a DQL Script .. 23

Using the Script Editor to Create a Script 23
Copying from One Script to Another 23

Saving a DQL Procedure ... 24
Using the Check DQL Option .. 25
How Security Works with DQL Procedures 26
Loading a DQL Procedure ... 27
Executing a DQL Procedure .. 27
Deleting a DQL Procedure ... 27
MEMBER LIST: Basic DQL Procedure 28
Parts of a DQL Procedure .. 29

Script .. 29
Body of a Procedure .. 30
Page Header and Page Footer .. 31
Summary Header and Summary Footer 32
Data-Entry Form .. 32

Printing the Procedure Definition ... 34

© DataEase International Ltd

2

Chapter 1 : DQL Environment
Using the DQL Script Editor .. 35

Viewing the DQL Script Editor ... 35
Parts of the DQL Script Editor ... 36
Moving the Cursor in the DQL Script Editor Window 37
DQL Script Menu .. 38
Checking a DQL Script ... 38
Displaying Pick Lists .. 39
Loading and Saving a DQL Script as an ASCII Text File 40
Clearing the DQL Script Editor .. 41

Setting Preferences for the DQL Script Editor 41
Script Preferences Dialog Options 41

Searching for a Text String .. 42
Search Dialog Options ... 42

Searching and Replacing a Text String 43
Moving Backward and Forward in a Search 44
DQL View Menu Options .. 45

DQL Toolbar .. 45

Chapter 2 : DQL Enhancements
Creating a DQL Data-Entry Form and Layout 46
Creating a Data-Entry Form ... 47
Displaying the Data-Entry Form .. 48
Using the Data-Entry Form .. 49
Using a Relationship to Specify Data-Entry Values 50
Alternatives to Using a Data-Entry Form 51
Saving the Data-Entry Form .. 52

Modifying a Data-Entry Form ... 52
Formatting DQL Output ... 53

© DataEase International Ltd

3

Chapter 3 : List Records
Using DQL to Create a Report ... 55
The Purpose of the Query: A Report 56
Telling DataEase Which Records to Select 57
Creating the Script ... 58

The for Command ... 58
Specifying Selection Criteria in a Query 58

Using the list records Command .. 60
Sorting and Grouping Data in a Query 60
Sorting and Grouping Operators 60

Displaying Data from a Related Form 62
Relational Operators .. 62

Checking a Script for Errors .. 64
Creating a Procedure Layout .. 65
Saving and Running a Procedure ... 67

Chapter 4 : Control Procedures
Using DQL to Manage Your Application 68

Types of DQL Commands ... 68
Procedure 1: INPUT RESERVATIONS 70

Script for the INPUT RESERVATIONS Procedure 71
Explanation of the Script .. 71
Saving the Procedure .. 77

Procedure 2: CALCULATE DISCOUNTS 78
Script for the CALCULATE DISCOUNTS Procedure 78
Explanation of the Script .. 79

Procedure 3: RESERVATION INVOICES 85
Script for the RESERVATION INVOICES Procedure 86
Explanation of the Script .. 87

Procedure 4: PROCESS RESERVATIONS 89
Script for the PROCESS RESERVATIONS 89
Explanation of the Control Procedure 89
Summary ... 90

© DataEase International Ltd

4

Chapter 5 : Transaction Processing
Using DQL in a Client-Server Environment 91

Using SQL Commands in a DQL Procedure 92
Using Explicit Transactions to Enhance a DQL 93
Modified INPUT RESERVATIONS Script 94

Explanation of the Modified Script 95
SQL User Permissions ... 98

Chapter 6 : DQL Tech Tips
DQL Tech Tips: How to .. 99

Organize the Commands in a Simple Script 100
Choose the Primary Table in a Multi-Table Procedure ... 103
Combine Multiple Selection Criteria using and and or 104
Add Group Totals and Grand Totals to a Report 105
List Individual Field Values from a Related Table 107
Use Indexes to Improve DQL Processing Speed 109
Post Totals to Another Table ... 113
Calculate a Percentage ... 114
Count the Number of Groups in a Report 116
Count the Number of Records in a Group 118
Produce Multiple Printouts of Records in a Report 120
Create an Accounts Receivable Ageing Report 122
Sort the Values in a Choice List Field 125
List the First Several Records in a Table 126
Find and List Duplicate Records 127

 Chapter 7 : SQL Tech Tips
SQL Tech Tips: How to

Control Transactions in a DQL Procedure 130
Join Tables in a DQL Script ... 131
Specify an Explicit Inner Join in a DQL Procedure 132
Join Tables Stored on Different Engines 133
Join Two Independent One-to-Many Relationships 134
Avoid Redundant Processing in a DQL Procedure 135
Improve Processing Speed by Creating a Views 136
Use Stored Procedures in a DQL Script 138
Replace Explicit DQL Locks with Semaphores 139

© DataEase International Ltd

5

Deadlocks: How to ... 141

Avoid Deadlocks .. 142
Detect Deadlocks .. 143
Prevent Deadlocks .. 146

Improve Performance ... 148

Chapter 8 : DQL Lexicon
DQL Lexicon: Introduction .. 149
DQL Lexicon Typographical Conventions 150
Symbols ... 151

+ (addition) .. 152
- (subtraction) ... 152
/ (division) .. 153
*(multiplication) .. 153
*(asterisk) ... 154
? (question mark) ... 155
~ (tilde) ... 156
: (colon) .. 157
() (parentheses) ... 158
. (period) .. 159
; semicolon ... 160
" " (quotation marks) .. 161
:= (assignment operator) ... 162
< (less than) ... 163
= (same as)... 163
<= (less than or equal to) .. 163
> (greater than) .. 164
>= (greater than or equal to) .. 164
-- (comment) .. 165

abs (absolute value) ... 166
acos (arccosine) ... 167
ad hoc relationship ... 168
all ... 170
ampm ... 172
and ... 173
any .. 174
application status ... 175
asin (arcsine) .. 176
assign .. 177
atan (arctangent) .. 178

© DataEase International Ltd

6

atan2 (arctangent 2) ... 179
backup db (backup database) ... 180
begin transaction .. 181
between ... 183
blank .. 184
break ... 185
call menu ... 186
call program .. 187
case .. 188
ceil .. 190
comment .. 191
commit ... 192
Comparison Operators .. 194
Conditional Statistical Operators .. 195
Constant Value .. 197
Control Procedure .. 198
copy all from ... 199
cos (cosine) .. 200
cosh (hyperbolic cosine) .. 200
count .. 201
count of .. 203
count of (example) ... 204
current ... 205
data-entry .. 207
date .. 208
day .. 209
db status (database status) ... 210
define ... 211
delete records ... 213
do ... 214
else ... 215
end ... 216
enter a record .. 218
error messages off ... 219
error messages on .. 220
exec SQL ... 221
exit .. 225
exp .. 226
export ... 227
firstc ... 229
firstlast ... 230
firstw .. 231

© DataEase International Ltd

7

floor .. 232
for ... 233
Functions ... 236
futurevalue .. 237
global ... 238
Grouping .. 240
highest of ... 242
hours .. 243
if Command ... 244
if Function ... 246
import ... 249
in ... 250
in groups ... 251
in order .. 253
in reverse ... 255
input using .. 256
Using the input using Command with Multiforms 258
install application ... 260
installment ... 261
item (Statistical Operator) .. 262
item (Conditional Statistical Operator) ... 263
jointext ... 264
julian .. 265
lastc .. 266
lastfirst ... 267
lastw ... 268
length ... 269
list records .. 270
lock ... 272
lock db (lock database) ... 274
log .. 275
log10 .. 275
lower .. 276
lowest of .. 277
max ... 278
mean .. 279
mean of .. 280
message .. 281
midc ... 285
midw ... 286
min ... 287
minutes .. 288

© DataEase International Ltd

8

mod (modulus) ... 289
modify records .. 290
month ... 291
named .. 292
Nested Actions .. 294
not .. 295
Operators ... 296
or .. 297
others ... 298
output ... 299
percent ... 300
periods ... 301
power ... 302
presentvalue .. 303
Primary Table .. 304
Procedural Commands .. 305
Processing Procedure ... 306
proper .. 307
query selection ... 308
random ... 310
rate ... 311
record entry ... 312
Relational Statistical Operators .. 313
Relationships .. 314
reorganize .. 315
restore db (restore database) .. 316
rollback .. 317
run procedure ... 319
Secondary Table ... 320
seconds ... 321
Selection Criteria .. 322
sin ... 323
sinh .. 323
Sorting ... 324
spellcurrency .. 325
spelldate .. 326
spellmonth ... 327
spellnumber .. 328
spellweekday ... 329
sqrt (square root) ... 330
Statistical Operators ... 331
std.dev. (standard deviation) ... 332

© DataEase International Ltd

9

std.err. (standard error) ... 333
sum .. 334
sum of .. 335
tan (tangent) ... 336
tanh (hyperbolic tangent) ... 336
temp ... 337
textpos ... 338
timeampm .. 339
tran off ... 340
tran on .. 341
Transaction Processing ... 342
Unlock ... 343
unlock db (unlock database) .. 345
upper .. 346
value ... 347
variable .. 348
variance ... 349
weekday ... 350
while ... 351
with ... 353
year .. 354
yearday .. 355
yearweek .. 356

© DataEase International Ltd

10

Copyright and Trademarks
This manual supports DataEase version 6.5 and higher.
Publication Date: December 2003.
© DataEase International Ltd. All rights reserved.
DataEase is a registered trademark, and the symbol and slogan are trademarks of DataEase
International. All other trademarks and registered trademarks belong to their respective
holders.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means: electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher.

© DataEase International Ltd

11

Acknowledgments
DataEase 6.5 is the product of:
Peter J. Tabord

Engineering
Eugene V. Bragin
Paul Davis
Andrey Drozdov
Alexander P Dymov
Duncan Ferguson
Kevin Glossop
Alexander N. Glushakov
Andrew Y. Puzfrew

Quality Assurance
Tim Griffith
Mark Povey
Wayne Roberts
Catriona Tabord
Anne Williams

Documentation
Dave Morgan

Marketing
Katia Robertson
Paul Temple

Training
Simon Irwin

DataEase wishes to thank all our customers, especially those who served as beta testers and
those who contributed suggestions, ideas, and their valuable time.

© DataEase International Ltd

12

Chapter 1 : DQL Basics
Welcome to the DQL Programmer's Guide
The DataEase Query Language (DQL) extends the data processing and reporting capabilities
of DataEase far beyond those of a standard form or report. In addition to letting you list,
modify, and delete selected records, DQL lets you:
• Create batch processing procedures to enter, modify, or delete sets of records instead of

processing each record individually as changes are made in User View.
• Use a special Data-entry form L to collect selection criteria, processing instructions, and

other user input each time a procedure is run.
• Monitor the entry of new records and determine how each record is processed depending on

its field value.
• Use global variables to pass values from one DQL Procedure to another.
• Call and chain together menuscall_menu, forms, reports, other DQL Procedures - even other

programs - and link these actions together into a single automated Control procedure.

Who Should Read this Book
This book is written for professional application designers, system administrators, and
experienced users who want to create DQL programs to extend the power of their applications.
If you are not familiar with DataEase, we recommend that you begin by performing the hands-
on lessons in the DataEase Quick Start Guide (QSG).
If you are responsible for designing custom applications, you'll find reference information on
creating tables, forms, reports, and menus, defining relationships, and other database design
guidelines in the DataEase Designer's Guide (DG).
If you use an application designed by someone else, you'll find all the information you need in
the companion volume, DataEase User's Guide (UG).
Before you begin working with DQL, we recommend that you read the DataEase User's
Guide (UG) and Designer's Guide (DG) and become thoroughly familiar with DataEase
record entry and document creation operations.

How this Book Is Organized
This book is organized into four sections, as follows:
Section I, Orientation, introduces the main features of the DataEase Query Language and the
DQL editing environment, and explains the basic methods used to create a DQL Procedure.
Section I contains Chapters I, 1, and 2.
Section II, Scripts, guides you through the creation of several simple and complex DQL
Procedures. Section I1 explains all major DQL concepts and methods, including Control and
Processing Procedures, Data-entry forms, and accessing data stored in an SQL database.
Section 11 contains Chapters 3, 4, and 5.
Section III, Tech Tips, answers your most frequently asked DQL questions, solves the most
common programming problems, and offers creative examples and short-cuts that show how
you can get the most from DQL. Section III contains Chapters 6 and 7.
Section IV, Keywords, contains the DQL Lexicon, a dictionary-style reference that explains
every command, function, and feature of DQL. Most entries in the DQL Lexicon section include
a DQL script sample to illustrate how a particular DQL term is used in a script. Section IV
contains Chapter 8.

© DataEase International Ltd

13

Typographical Conventions
Throughout the DataEase manuals, we've used the following typographical conventions to
make the documentation easier to understand.

Term Typeface Used Example

Glossary Term Italic Data Model
Menu Option Bold File>>Open
Function Key Uppercase F7 DELETE RECORD
Application Name bold Club ParaDEASE
Document/Table Name Uppercase MEMBERS
Field Name Small Capitals FIRSTNAME
DQL Term Bold Lowercase highest of
SQL Command Uppercase Courier CREATE TABLE

Glossary terms with special meaning in DataEase are printed in italics the first time they occur
in the text and are defined in the on-line glossary available in Help.
When a menu option is explained, a pull-down menu appears in the upper right-hand corner of
the page. The menu option under discussion is highlighted, as in the illustration below:

DataEase function keys are assigned names (F2 SAVE AS NEW RECORD). However, you
need only press the F2 key to execute the command; you do not need to type SAVE AS NEW
RECORD. The key name is included in the documentation to help you recall the purpose of
each key when you are learning the product.

© DataEase International Ltd

14

The Basic DQL Vocabulary
DQL keywords and symbols are organized into nine categories:

•••• Commands
•••• Operators
•••• Functions
•••• Database Objects
•••• Relationships
•••• Symbols
•••• Values
•••• Variables and Constants
•••• Comments

Commands
Commands let you list, enter, modify, or delete records, execute another procedure or
external program, and direct output to the screen, disk, or printer. DQL contains four types of
commands:
• Processing Commands let you directly manipulate data. Examples include list records,

modify records, and delete records.
• Procedural Commands let you control the flow of actions within a DQL Procedure.

Examples include if...then...else, case...value...others, while...do, define, and message.
• Control Commands let you link any number of DQL Procedures together, making it

possible to perform several actions on multiple data sources within a single procedure.
Examples include run procedure, call menu, call program, import, and backup db.

• SQL Environment Commands let you view and process data stored in a remote SQL
database. Examples include exec SQL, commit, rollback, tran on, and tran off.

© DataEase International Ltd

15

Operators
Operators are used to manipulate variables and tell DataEase how to carry out certain
Processing and Control Commands (such as the order in which to process records, what
statistics to generate, etc.). DQL includes seven types of Operators:

• Comparison Operators are used to compare two values. Examples include <= (less than
or equal to), > (greater than), and = (equal to).

• Grouping/Sorting Operators tell DataEase how to group and order records when
displaying or printing data. Examples include in groups, in order, and in reverse.

• Relational Operators all and any are used to list records related to the record currently
being processed.

• Statistical Operators summarize the values of a field for all records processed. Examples
include sum, mean, max, and min.

• Conditional Statistical Operators generate summary information about a set of records
that meet a specified condition. Examples include count, percent, and item.

• Relational Statistical Operators summarize information about fields in a set of records
related to the record currently being processed. Examples include count of, highest of,
lowest of, mean of, and sum of.

• General Operators, include the arithmetic operators (*(asterisk) ,/ , + (addition) , and -
(subtraction)), the assignment operator :=), and the logical operators (and and or).

© DataEase International Ltd

16

Functions
A function is a routine that performs a particular calculation, text manipulation, or other data
processing task. DQL provides 58 functions grouped into nine categories: Date, Time, Spell,
Text, if, Math, Financial, Scientific, and Trigonometric.
A function is usually followed by one or more parameters (also called arguments) enclosed
within parentheses. A parameter is information you supply to specify the operation of the
function.
For example, the firstc function lets you extract a number of characters from the beginning of a
text value. To use the firstc function, you must supply information telling DataEase: (1) from
what text value to extract characters, and (2) how many characters to extract. The statement
below shows the firstc function and the two parameters needed to extract the first four
characters in a LAST NAME field:

firstc (LAST NAME,4)

When processing a MEMBERS record for a member named Williams, the above statement
returns the value, "Will".
DataEase lets you use functions in field Derivation Formulas as well as in a DQL Procedure.

The Functions pick list in the Script Editor is illustrated below:

© DataEase International Ltd

17

Database Objects
Database objects are the entities you create in an application to store and access data.
Tables, columns, fields, relationships, and documents are all examples of database objects
that can be specified in a DQL script.
For example, the script below specifies two table names and three column names that tell
DataEase what data to print in a report:

for MEMBERS ;

 list records

 FIRST NAME ;

 LAST NAME ;

 all FAMILY MEMBERS FIRST NAME .

end

Relationships
Relationships link records stored in different database tables. In a DQL Procedure, you can
access data in a related table using predefined relationships (stored in the Relationships form)
and adhoc relationships that are defined within the procedure.
The figure below shows the Relationships form.

© DataEase International Ltd

18

Symbols
See DQL 8 for more information on specific DQL language elements.

A symbol is a character used to punctuate a DQL script. Examples include a period, comma,
semicolon, and parenthesis.
Additionally, special symbols called wild card symbols are used to represent unknown
characters. Wild card symbols include the asterisk (*), tilde (#), and question mark (?). The
example below shows a question mark used to take the place of an unknown character:

for MEMBERS with LAST NAME = "Anders?n " ;

list records

LAST NAME;

FIRST NAME.

end

Variables
A variable is a value that can change while a script is being processed. A variable may contain
a number, numeric string, text string, time, or date value.
When you define a variable, you specify a word or letter to represent the variable in the script.
You also specify what type of data is to be stored in the variable. The following line defines a
variable named DISCOUNT, used to store a number value:

define temp "DISCOUNT" Number.

Once a variable is defined, you can use the assign command to set its value. The following line
sets the value of the DISCOUNT variable to fifteen percent of a member's TOTAL DUE:

assign temp DISCOUNT := 0.15 * TOTAL DUE.

Although a variable can hold only one value at a time, that value can change any number of
times during processing. In the example above, the value of DISCOUNT might change with
each MEMBERS record processed.
DataEase lets you define a temporary variable to store a value during a single DQL Procedure,
or a global variable used to pass a value from one DQL Procedure to another.

Values
Values are the data processed by a procedure. A value can be any number or text string
stored as a constant or variable, or the contents of a data field (the current value in the CLUB
NAME field, for example).

© DataEase International Ltd

19

Comments
Comments are notes and explanations you can include in a DQL script to make it easy for you
or another programmer to understand. Indicate the beginning of a comment with a double
hyphen (-). When executing the script, DataEase ignores all text between the double hyphen
and the end of the line.

-- This script lists MEMBERS from Texas.

for MEMBERS with STATE = "TX" ; -- select Texas members.

list records -- Print the members'
 FIRST NAME; -- first and last names.
 LAST NAME.
end -- end of script.

© DataEase International Ltd

20

Getting Help on DQL Keywords and Concepts
The DataEase online Help system lets you get help on any DQL keyword or concept. Most
DQL topics in the Help system also contain a script sample that you can copy and paste
directly into your script.
To view a list of DQL-related Help topics, choose Help>>Contents. When DataEase displays
the Help Contents screen, click on the Procedure icon. DataEase displays a list of all DQL
terms and concepts.
Click on a DQL term to jump directly to a description of that term.

How to Access DQL Help
1. Choose Help>>Contents. DataEase opens the Help window and displays the Help

Contents screen.
2. Click on the Procedure icon in the Contents screen. DataEase displays a list of topics (jump

terms), one for each DQL keyword and concept.
3. Click on a DQL topic. DataEase jumps to an explanation of the selected topic.
4. Choose File>>Exit to exit the online Help system.

© DataEase International Ltd

21

General Steps for Creating a DQL Procedure
A DQL Procedure can perform a simple and direct action (such as listing how many members
live in Connecticut) or a series of complex actions. For example, you can execute a procedure
at the end of the day that prints several summary reports, exports data via modem to each
branch office, and finally backs up the database. Regardless of the level of complexity, all
procedures have one thing in common, a script.
A DQL script is a series of instructions that tell DataEase what actions to perform. The type of
script determines what other elements the DQL procedure contains. For example, a script that
produces a printed report needs a layout. On the other hand, a script that deletes a group of
records from a table does not require a layout since this script doesn't generate any visible
output.
The steps required to create a typical DQL Procedure are:
• Start a new procedure document (required).
• Create a Data-entry form)optional).
• Create a scriptSCRIPT (required).
• Save the procedure (required if you want to access the procedure again in the future)

Although you normally perform the steps in the order listed above, DataEase lets you vary the
sequence. For example, if you know ahead of time that you want to include a Data-entry form
for the procedure, you can create the form before you write the script.

© DataEase International Ltd

22

Starting a New DQL Procedure
When you start a new DQL Procedure, DataEase displays the New Document Dialog shown
below. If the procedure produces visual output, you can select a Style Sheet. Other options in
this dialog are disabled.
When you finish making your selections in the New Document dialog, click OK to display the
Script Editor.

How to Start a New DQL Procedure
1. Choose File>>New>>Procedure. DataEase displays the New Document dialog.
2. Double-click on the style sheet you want the layout to use.
3. Click OK. DataEase automatically opens the Script Editor Window.

© DataEase International Ltd

23

Creating a DQL Script
See DQL 3, 4 for examples of the for, if..then..else, case, and while..do statements used in the
context of a complete script.

Every DQL Procedure must have a script (a series of DQL commands that tell DataEase what
actions you want to perform). DataEase gives you two ways to create a script. You can:
• Create a new script using the Script Editor.
• Use the Script Editor to modify an existing script or copy portions of one script to another.

Using the Script Editor to Create a Script
In the Script Editor you can enter a script by typing your selections directly into the editor, by
making selections from the interactive pick lists displayed at the bottom of the Script Editor
Window, or by copying text from another source (e.g., another script, external text file, or a
sample script from the online help facility).
The advantage to making selections from the interactive pick lists is that you don't need to
remember the exact names of different objects in the application since they are displayed for
you. If you type your selections directly into the editor, you must correct any spelling errors
before you can execute the procedure.

Copying from One Script to Another
DataEase provides three ways to copy all or part of a script so you can use it in another
procedure:
• Copy all or part of an existing script to the Windows Clipboard, then paste the copy into

another script and use the copied script as a starting point for a new script or as an addition
to another existing script. With both procedures open, use the Copy option to copy all or part
of the first script to the Cliphoard, then use the Paste option to paste the text from the first
script into the second script.

• Select File>>Save As and save the existing script under a new name. This option lets you
keep the original procedure intact and use the newly named copy as the starting point for
defining a new procedure.

• Copy all or part of a sample script from the online Help facility.

How to Create a DQL Script
There are four possible ways to create a script:
• Type the script directly into the Script Editor window.
• Double-click each of the required commands in the interactive pick lists displayed at the

bottom of the Script Editor window.
• Choose Script>>Insert File. Then double-click to select the directory where the text file is

stored and double-dick to select the filename to load.
• Copy a code sample from the online Help system to the Clipboard and then to the Script

Editor.

© DataEase International Ltd

24

Saving a DQL Procedure
You can save a DQL Procedure any time during the creation of the procedure. If you are
saving the procedure for the first time, DataEase displays the Document Save As dialog shown
below.

Enter a procedure name up to 20 characters long. It can be any name you like, but each
document in the same database must have a unique name. After you specify the name, click
OK. DataEase saves the procedure on disk.
To save an existing procedure under a new name, choose File>>Save As. DataEase displays
the Document Save As dialog, where you can enter a new name for the procedure. After you
enter a new procedure name, the modified procedure is saved under the new name. DataEase
also retains the original (unmodified) procedure under the original name.

© DataEase International Ltd

25

Using the Check DQL Option
Although you can save a script at any time, you cannot execute a procedure whose script
contains spelling and/or syntax errors. You must correct all syntax and spelling errors in your
script before DataEase can execute the procedure. DataEase automatically checks both
spelling and syntax when you choose Script>>Check DQL.
DataEase prevents you from running a procedure until you use the Check DQL option to verify
the script. DataEase performs two functions when you run Check DQL. DataEase checks the
script for spelling and syntax errors and prepares the script for execution. If any errors are
detected, DataEase displays the error message shown below, indicating both the location and
nature of the error.
{bmct dqli-18.bmp}
After you have successfully run the Check DQL option, you can execute the Procedure.

How to Use the Check DQL Option
• Choose Script>>Check DQL. If there is an error in the script, DataEase indicates the

location of the error with an error message.
• Correct the error and choose Script>>Check DQL again. Repeat the process until the script

is error-free. When there are no more errors, DataEase compiles the script.

© DataEase International Ltd

26

How Security Works with DQL Procedures
Every user, regardless of their security level, can create a DQL Procedure. The settings
selected in the Document Securities dialog control each user's ability to view, modify, delete,
and execute a procedure. Since a procedure is a type of document, these settings can vary
from one procedure to another. The default settings are shown in the table below.

How Security Affects DQL Procedures

User Security Required to ...
Document Security Option That
Controls This Function Default Setting

View an existing Procedure View Layout These options are automatically
set to the level of the user who
created the document.

Modify an existing Procedure Modify Layout
Delete an existing Procedure Delete Document

Open an existing Procedure Open Document Low 3

The default settings for each of these security controls is established when the document is
created. For example, if a Medium3 level user creates a document, the Document Security
options for View Layout, Modify Layout, and Delete Document are automatically set to
Medium3. Any user with an adequate security level (e.g., Medium3 or higher in this example)
can change the default settings at a later date.
DataEase prohibits you from listing, modifying, or deleting data to which you have inadequate
view or write access. You can include the names of any columns in a script, but when the
script is compiled, if you have inadequate security access to any of the columns listed,
DataEase displays a warning message.
DataEase displays a similar warning message when you attempt to execute such a procedure.
The table below shows the action DataEase takes when you execute a procedure that
accesses data to which you have inadequate view or write security.

Data Access Restrictions
DQL
Command

Result

list records DataEase lists only those data values to which you have adequate view security.

modify records DataEase modifies only those columns to which you have adequate write security.

delete records If the table contains any columns to which you have inadequate view or write security,
Data Ease will not delete any of the records in the table.

enter a record DataEase enters only those columns to which you have adequate write security.

© DataEase International Ltd

27

Loading a DQL Procedure
You can load a previously created procedure into memory to view it, modify it, or run it.
Choose File>>Open to display a list of all the existing documents in the application. Specify
the procedure you want to load by clicking its name. Check Open in Designer View, then click
OK to view or modify the procedure.

Executing a DQL Procedure
If you define a procedure and then switch to User View, DataEase processes the procedure
loaded in the computer's memory. If you choose File>>Open in User View, you can run a
procedure by selecting it from the dialog shown above. You can also run a procedure by
highlighting it in the Application Catalog and clicking the User View icon.

Deleting a DQL Procedure
DataEase lets you permanently delete a procedure that is no longer necessary. When you
choose File>>Delete, DataEase displays the Delete a Document dialog, which lets you specify
the procedure you want to delete by highlighting its name then dicking OK. When you click OK,
DataEase displays an alert dialog where you must verify that you want to delete the procedure
before it is removed from the disk.

© DataEase International Ltd

28

MEMBER LIST: Basic DQL Procedure
The Club ParaDEASE MEMBER LIST procedure appears throughout the rest of this chapter
to illustrate basic DQL concepts. MEMBER LIST is a simple DQL Procedure that lists club
members living in California and their family members.
As you read the following pages, you may want to view the DQL Script Editor and the
components of the MEMBER LIST procedure on screen.
To open the procedure, start the Club ParaDEASE sample application if you have not already
done so. When DataEase displays the Application Catalog, double-click on the Procedures
item in the Catalog to display the list of Club ParaDEASE procedures.

© DataEase International Ltd

29

Parts of a DQL Procedure
Like a form, report, or menu, a DQL Procedure is a type of DataEase document. A procedure
contains many of the same elements as other documents, including the Body, Page Header
and Footer, and Summary Header and Footer, that control the appearance of a procedure's
printed output. However, a DQL Procedure contains two additional elements that do not
appear in a form or report: a script and a Data-entry form. The script appears in the DQL Script
Editor window.
This section briefly describes how the various parts of a DQL Procedure fit together.
To open the procedure in Designer View, click once on the MEMBER LIST procedure name in
the Catalog, then click on the Designer View button on the Toolbar. DataEase displays the
procedure.

Script
A script is a set of DQL instructions that DataEase executes when you open a procedure
document. A script can ask a question about data in one or more tables, list or manipulate that
data, or chain together any number of separate data management operations.
The figure below shows the script for the MEMBER LIST procedure. If you are viewing the

MEMBER LIST procedure and the Script Editor is not currently displayed in the active window,
choose View - Procedure to activate the Script Editor.

The script above tells DataEase:
• Find all records in the MEMBERS table for members who live in California.
• List the MEMBER ID, LAST NAME, and FIRST NAME for each selected MEMBERS record.
• For each MEMBERS record, find all related FAMILY MEMBERS records and list the FIRST

NAME and DATE OF BIRTH values from each of those records.

© DataEase International Ltd

30

The output generated by this script appears below.

Body of a Procedure
When you define a script that generates output, the output is printed in the body of the
document. You can create a layout for the body to determine how that output appears when
printed.
Creating a layout for a DQL Procedure is just like creating a report layout: you can use
DataEase's automatic layout options or you can define a custom layout.
To view a layout on screen, open the procedure in Designer View, then choose View>>Body.
The figure below shows the layout for the MEMBER LIST procedure.

© DataEase International Ltd

31

DataEase also lets you create a DQL Procedure that does not generate any output. For
example, you can create a procedure that simply deletes outdated records, performs an
import, backs up the application, or transfers data from one table to another. When you run
that procedure, DataEase displays it as a blank screen until the procedure is executed.

Page Header and Page Footer
You can enhance the printed output of a DQL Procedure by creating Page Header or Page
Footer. Page Headers and Footers appear on each printed page and can contain text,
graphics, a page number, the current date, and other useful information.
To view a document Page Header or Page Footer on screen, choose View>>Page Header or
View>>Page Footer.

To create a Page Header or Page Footer for a DQL Procedure, follow the same steps used to
create Page Header or Page Footer for a form or report: choose View>>Page Header, then
create the text objects, images, lines, variables, and any other objects you want to include.

© DataEase International Ltd

32

Summary Header and Summary Footer
See DG 6 for information on creating Summary Variables.

You can enhance the printed output of a DQL Procedure by creating a Summary Header or
Summary Footer. Summary Headers and Footers appear on each printed page between the
Page Header and Footer and the body of the document, and can contain text, graphics, a page
number, the current date, and other useful information.
To view a document Summary Header or Summary Footer on screen, choose
View>>Summary Header or View>>Summary Footer.
To create a Summary Header or Summary Footer for a DQL Procedure, follow the same steps
used to create Page Header or Page Footer for a form or report: choose View>>Summary
Header, (then create the text, images, lines, variables, and any other objects you want to
include).

The Difference Between Summary and Page Headers and Footers
• If the output of a procedure or report is too wide to fit onto a single page, it is tiled across the

width of several pages.
• Pages Headers and Footers appear at the top and bottom of every tiled page.
• Summary Headers and Footers appear once for every ‘vertical’ page, that is, they do not

repeat on every tiled page.

Data-Entry Form
A Data-entry form is a special form that appears at the start of a DQL Procedure. A Data-entry
form lets you specify selection criteria and other information used by the procedure before
processing begins. For example, a Data-entry form can appear at the beginning of a mailing
label printing procedure to let you specify a particular group of customers for whom to print
labels.
As originally designed, the MEMBER LIST procedure can list records from only one state,
California. By adding a Data-entry form like the one shown in the figure below, you can make
the procedure flexible enough to list records for any state.

© DataEase International Ltd

33

When you use a Data-entry form, you must usually modify the DQL script so DataEase
recognizes the input from the Data-entry form. The illustration on the next page shows how the
MEMBER LIST script can be modified to work with a Data-entry form.

See DQL 2 for information on creating a Data-entry form.

The figure below shows the original MEMBER LIST script (above) and the modified version for
use with a Data-entry form (below). The modified version tells DataEase to use the selection
criterion specified in the Data-entry form instead of a "hard coded" value (e.g., STATE ="CA").

DataEase can automatically redisplay a Data-entry form after you run a DQL Procedure, so
you can run that procedure repeatedly, processing a different set of records each time the
procedure is executed. The data-entry form appears before the Print dialog, so you could also
use it to first print to the screen, then to a printer.

© DataEase International Ltd

34

Printing the Procedure Definition
The Procedure Definition is a printed document summary of the procedure. The definition is
composed of four items:
• A copy of the script.
• A copy of the Data-entry form if one is defined for the procedure.
• A copy of the layout.
• A description of each object included in the layout. Each field description includes the Field

Name, Type, Length, and a Yes or No indicating whether leading and trailing spaces in the
field are removed when the output is displayed.

To print the definition of the procedure currently in memory, select File>>Print. DataEase
displays the Print dialog. Check the Include Definition box in the Options section of the Print
dialog, then click OK. DataEase automatically sends the output to the default printer.

You cannot print the Procedure Definition on the screen. If you select Include Definition and
there is no correctly configured printer connected to the computer, DataEase displays an error
message and cancels the print command.

© DataEase International Ltd

35

Chapter 1 : DQL Environment
Using the DQL Script Editor
This chapter explains how to create a DQL script and how to use each of the features available
in the DQL programming environment, including the script editor box, interactive pick lists, and
the special menu options that are only available when you are working in the DQL script
editing environment.

Viewing the DQL Script Editor
To display the DQL Script Editor, choose File>>New>>Procedure. When DataEase displays
the New Document dialog, click OK.

Choose a style sheet if your report generates print output, then click OK to close the New
Document Dialog and open the Script Editor.
DataEase opens two windows: one displays the layout of the procedure; the other displays the
Script Editor.

© DataEase International Ltd

36

Parts of the DQL Script Editor
The DQL Script Editor, illustrated below, contains several features that help you write DQL
scripts.
The DQL Script Editor contains the script editor box where you enter your DQL script...

 ...and interactive pick lists, from which you can select DQL commands, operators, and
functions, and the names of the database tables, columns, and relationships in the application.

Interactive Pick Lists
The interactive pick lists contain all the DQL keywords, and all the application's document,
table, column, and relationship names, so you don't have to memorize them in order to write a
script. Just double-click the terms you want. DataEase enters them into the script automatically
at the location of the text cursor.
If you prefer, you can simply type a script into the script editor box instead of using the pick
lists.

Resizeable Panels
You can adjust the height of the interactive pick list panel by dragging its top border up or
down. If you're thoroughly familiar with DQL and the elements in your application, you may
want to hide the pick lists to increase the text editing area in the Script Editor. You can hide
individual pick lists by clicking on the appropriate pick list icons, or hide the entire pick list
panel by choosing Script>>Pick Lists>>Show Pick Lists.

© DataEase International Ltd

37

Moving the Cursor in the DQL Script Editor Window
The table below summarizes the cursor movement keys used in the DQL Script Editor. You
can also use the mouse and scrollbars to navigate around the script editor box.

Cursor Movement in the DQL Script Editor
Keystroke Function

 or Move the cursor one character to the left or right.

 or Move the cursor one line up or down.

Ctrl + Move the cursor one word to the left.

Ctrl + Move the cursor one word to the right.

Shift + Select one character to the right.

Shift + Select one character to the left.

Ctrl + Shift + Select one word to the right.

Ctrl + Shift + Select one word to the left.

Del Delete the character at the cursor location.

Backspace Delete the character to the left of the cursor location.

Home Move the cursor to the beginning of a line.

End Move the cursor to the end of a line.

PgUp or PgDn Display the next or previous screen.

Ctrl + Home Move the cursor to the beginning of the script.

Ctrl + End Move the cursor to the end of the script.

© DataEase International Ltd

38

DQL Script Menu
When you display the DQL Script Editor, DataEase displays the Script menu on the Menu Bar
in place of the Objects menu. Use the options on the Script menu to check the syntax of a
script, customize the Script Editor, load or save a script as a text file, and clear all text from the
Script Editor.

Checking a DQL Script
When you choose Script>>Check DQL, DataEase displays a message to help you identify
and fix the problem.

A syntax error occurs when you omit or mistype a required keyword or punctuation mark. The
figure below shows an example of a common syntax error and the message DataEase
displays upon finding it.

Although DataEase lets you save a procedure that contains errors, you cannot run the
procedure until you check the DQL syntax and correct any errors.

© DataEase International Ltd

39

Displaying Pick Lists
When you choose Script>>Pick Lists, DataEase displays a cascade menu that lets you hide
or show the entire pick list panel or show individual lists (Commands, Tables, Columns, etc.) in
the window. The last option on the cascade menu, Alphabetic, lets you display the pick lists in
their conventional order or alphabetic order.

© DataEase International Ltd

40

Loading and Saving a DQL Script as an ASCII Text File
Because DataEase lets you load and save a DQL script as an ASCII text file, you can create a
script in a text editor other than the DQL Script Editor. Then you can build a library of
frequently used DQL scripts and routines saved as text files.
When you choose Script>>Insert File, DataEase lets you load the contents of an ASCII text
file into a script. Place the cursor at the location where you want to insert the text, then choose
Script>>Insert File. DataEase displays the Load File dialog, which lets you specify the name
and directory of the source file.
{bmct dqlOne-6.bmp}
When you click OK, DataEase closes the dialog and inserts the contents of the text file into the
script.

How to Insert an ASCII Text File into a DQL Script
• Place the cursor in the script at the location where you want to insert the contents of the text

file.
• Choose Script>>Insert File. DataEase displays the Load File dialog.
• Specify the drive, directory, and name of the source text file, then click OK. DataEase inserts

the text at the cursor location.

When you choose Script>>Save As File, which lets you save a script as an ASCII text file.

DataEase displays the Save As File dialog.
When you click OK, DataEase closes the dialog and saves the script.

How to Save a DQL Script as an ASCII Text File
1. Choose Script>>Save As File. DataEase displays the Save As File dialog.
2. Specify a target drive and directory in which to save the file.
3. Specify a name for the text file, then click OK. DataEase saves the file.

© DataEase International Ltd

41

Clearing the DQL Script Editor
When you choose Script>>New, DataEase lets you quickly clear all text from the Script Editor.
If you use the Script Editor to create multiple scripts or routines in a single session, you can
use the New option to clear the Script Editor between scripts.

Setting Preferences for the DQL Script Editor
See DG 6 for information on setting font attributes.

When you choose Script>>Preferences, DataEase displays the Script Preferences dialog
shown below.

Script Preferences Dialog Options
Create layout after Checking DQL tells DataEase to display the body of the procedure layout
immediately after the script is successfully checked. Deselect this option if you don't want to
define a layout for the procedures.
Alphabetize Pick Lists tells DataEase to display all pick lists in alphabetic order. If you
uncheck this option, DataEase displays the DQL keywords in their conventional order (as
originally established in the character-based versions of DataEase).
Set Font lets you change the font, font size, color, and special effects of the text displayed in
the Script Editor. When you change the Script Editor font, DataEase displays the Script the
pick lists in the new font.

© DataEase International Ltd

42

Searching for a Text String
When you choose Edit>>Search, DataEase displays the Search dialog, which lets you search
a script for a text string. For example, you can use Search to locate each occurrence of a field
name, table name, or variable name in a script.

Search Dialog Options
Search for lets you specify the text string.
Options let you specify additional search criteria:
• Case sensitive search tells DataEase to find text strings that match your specified string

exactly, including the capitalization of the letters. For example, if you select this option and
search for the string, "MemberID", DataEase ignores "MEMBERID", "memberid", and
"memberID".

• Match whole word tells DataEase to ignore a text string if it occurs as part of another word.
For example, if you select this option and search for the string, "date", DataEase ignores
"date1", "date_of_birth", "postdated", "update", and "validate".

Search Direction tells DataEase to search forward or backward through the script.
• Next tells DataEase to search forward, finding each instance of the target string that occurs

between the current cursor location and the end of the script.
• Previous tells DataEase to search backward, finding each instance of the text string that

occurs between the current cursor location and the beginning of the script.

© DataEase International Ltd

43

Searching and Replacing a Text String
When you choose Edit>>Search and Replace, DataEase displays the Search and Replace
dialog, which lets you search for a text string and replace each instance of that string with
another text string. For example, you can use Search and Replace to replace each occurrence
of a field name in a script with a different field name.

DataEase lets you decide whether to replace each individual occurrence of the specified text
string, or replace all occurrences in one step.

Search and Replace Dialog Options
Search for lets you specify the text string.
Replace lets you specify the text you want DataEase to use to replace the target text string.
Options let you specify additional search criteria for the target text string, ask DataEase to
prompt you before replacing each occurrence of the text string, and specify whether you want
to replace one occurrence or all occurrences of the target string.
• Case sensitive search tells DataEase to find text strings that match your specified string

exactly, including the capitalization of the letters. For example, if you select this option when
searching for the string, "MemberID", DataEase ignores "MEMBERID", "memberid", and
"Memberid".

• Match whole word tells DataEase to ignore a text string if it occurs as part of another word.
For example, if you select this option and search for the string, "date", DataEase ignores
"date1", "date_of_birth", "postdated", "update", and "validate".

• Confirm before replacing tells DataEase to highlight the target text string and prompt you
to click Yes to replace the string or click No to leave the string unchanged.

• Replace all occurrences tells DataEase to replace all instances of the target text string that
occur after the current cursor position. If you use this option while the Confirm before
Replacing option is activated, DataEase asks for confirmation before replacing each
instance of the target text string.

Search Direction lets you specify whether DataEase searches forward or backward through
the script.
• Next tells DataEase to search forward, finding each instance of the target text string that

occurs between the current cursor location and the end of the script.
• Previous tells DataEase to search backward, finding each instance of the target text string

that occurs between the current cursor location and the beginning of the script.

© DataEase International Ltd

44

How to Search for and Replace Text in a DQL Script
1. Choose Edit>>Search and Replace. DataEase displays the Search and Replace dialog.
2. Enter the text string you want to search for in the Search for text box.
3. Enter the replacement text in the Replace text box.
4. Specify the appropriate search Options.
5. Specify a Search direction. Click Next if you want DataEase to search forward in the script

starting at the current cursor location. Click Previous to search backward through the script.
6. Click OK. DataEase finds the specified text string.

Moving Backward and Forward in a Search
When you choose Edit>>Next, DataEase searches forward to find each instance of the
specified text string that occurs between the current cursor location and the end of the script.
When you choose Edit>>Previous, DataEase searches backward to find each instance of the
specified text string that occurs between the current location and the beginning of the script.

© DataEase International Ltd

45

DQL View Menu Options
See DG 5 for information on viewing different parts of a document.

In the DQL environment, the first seven options on the View menu let you choose which part of
a DQL Procedure is displayed in the active window. The View menu options let you display the
body of a DQL Procedure, Summary Header, Page Header, Page Footer, Summary Footer, or
Data-entry form in the active document window. The DQL Script Editor appears in its own
window, so you can display the script, pick lists, and any of the other components of a
procedure on screen at the same time.

DQL Toolbar
When the DQL Script Editor is displayed in the active window, DataEase replaces the
Designer Toolbar with the DQL Toolbar. The DQL Toolbar lets you execute the most frequently
used script editing actions with a single mouse click.

Full information on DataEase Toolbars can be found in the Help file.

© DataEase International Ltd

46

 Chapter 2 : DQL Enhancements
Creating the Data-Entry Form and Layout of a DQL Procedure
See DQL I for information on starting a new procedure, writing a script, and saving a
procedure.

Creating a typical DQL Procedure includes five steps.
1. Start a new procedure document (required).
2. Create a Data-entry form (optional).
3. Create a script (required).
4. Create a procedure layout (optional) .
5. Save the procedure (required if you want to access the procedure again in the future).

Although you normally perform the steps in the order listed above, DataEase lets you vary the
sequence. For example, if you know ahead of time that you want to include a Data-entry form
for the procedure, you should create it before you write the script.
This chapter explains how to perform two optional steps, creating a Data-entry form and
designing a layout.

© DataEase International Ltd

47

Creating a Data-Entry Form
See DG 3 and 6 for information on how to create a record entry form.

The Data-entry form is a special type of form that lets you enter varying information each time
you run a procedure. The Data-entry form is a part of the procedure, just like the script and the
layout. DataEase automatically creates a Data-entry form for each procedure. However, if you
don't define any objects in the Data-entry form, DataEase treats the procedure as if it has no
Data-entry form. If you have already created a script, you can easily add a Data-entry form by
choosing View>>Data-entry Form. DataEase displays a blank document editor window on
which you define the Data-entry form.
In general, you define the Data-entry form the same way you do a record entry form. However,
because there is no underlying table associated with a Data-entry form, any data entered on
the Data-entry form is not stored in the database. Therefore, the Data-entry form cannot
contain:
• Indexed fields.
• Unique fields.
• Sequenced ID fields.
• Virtual fields.
• Subforms.

In all other aspects, defining the Data-entry form is exactly the same as defining a record entry
form. You create Text, Field, Button, and other Document objects anywhere on the form. You
can also use the Windows Clipboard to copy objects from an existing record entry form. You
can create only one Data-entry form for each procedure. However, you can use the DQL input
using or record entry commands to allow multiple input forms for a procedure.

How to Create a Data-entry Form
1. Choose View>>Data-entry Form. DataEase displays a blank form object.
2. Place and define Field, Text, Button, or Document objects on the form.
3. Choose File>>Save. If you haven't previously saved the procedure, DataEase displays the

Document Save As dialog. Type a name for the procedure up to 20 characters in length.

© DataEase International Ltd

48

Displaying the Data-Entry Form
 See DQL 4 and DQL Lexicon for information on the input using command.

By default, the Data-entry form is displayed once when the procedure is first run.
The Document Properties dialog contains an option called "Redisplay Data-Entry Form After
Run".
• If you check the Redisplay Data-Entry Form After Run box, each time the procedure is

completed, the Data-entry form reappears and you can enter different data to be used in
processing the script as many times as you want. When you finish running the procedure,
choose File>>Close to exit the Data-entry form.

• Deselect Redisplay Data-Entry Form After Run if you only want to run the procedure once.
The Data-entry form appears on the screen once at the start of the procedure. When
DataEase finishes processing the procedure, it is automatically closed.

Note: The DQL input using command can be used to input data at any point during a
procedure.

© DataEase International Ltd

49

Using the Data-Entry Form
See DG 8 for information on how to create a relationship

When you run a procedure that has a Data-entry form, the values you enter on the Data-entry
form are used according to the instructions in the script. Each time the procedure is run,
DataEase displays the Data-entry form, lets you type in data, and then uses the data to
process the script.
In addition to supplying selection criteria for the script, a Data-entry form can be used to
specify:
• Data entered or modified in one or more tables.
• Variables used in computations.
• Data used in conditional processing.
• Data printed in the report output.
• Important reminders to the user who runs the report (e.g., instructions on what type of paper

to place in the printer).

© DataEase International Ltd

50

Using a Relationship to Specify Data-Entry Values
If you define a relationship between a Data-entry form and a database table, you can use a
lookup formula to automatically display information from the table in the Data-entry form.
When you create the relationship, the Data-entry form is identified by the name of its
corresponding DQL Procedure. For example, suppose you want to enter a MEMBER ID
number on the Data-entry form associated with your MEMBER_STATUS report and have
DataEase lookup the corresponding LAST NAME. You must first create a relationship between
MEMBERS and the Data-entry form, as illustrated in the figure below.

Note: the procedure name will NOT appear in the table names picklist. You must type this in
yourself.

© DataEase International Ltd

51

Alternatives to Using a Data-Entry Form
See DQL 8 for more information on the record entry and input using commands.

In a script, you tell DataEase to use the field values on the Data-entry form by placing the
keyword data-entry before the field name. For example, the script statement

for MEMBERS with STATE = data-entry STATE

,list records

…tells DataEase to list only the members who live in the state specified in the STATE field on
the Data-entry form.
The Data-entry form can only be used to input data at the start of a procedure. DataEase
offers two other data input methods in addition to the Data-entry form.
The DQL record entry command allows records to be entered into a record entry form at any
point during a procedure. The records are directly entered into the database; they are not
processed by the script.
The DQL input using command also lets you use a record entry form to input information. The
command may be used at any point during a procedure. The input using command lets the
script process the records before they are entered into the database.
The differences between the three data input methods are summarized in the table below.

Data Entry Methods
Data Input
Method

Use in
Script

Full Record
Entry Facility

DQL
Control

data-entry At Start Only No Yes

record entry Anywhere Yes No

input using Anywhere Yes Yes

© DataEase International Ltd

52

Saving the Data-Entry Form
The Data-entry form is saved when you save the corresponding DQL Procedure. If you are
saving a procedure for the first time, DataEase displays the Document Save As dialog. Enter a
name for the procedure up to 20 characters long.
The data entered into a Data-entry form, however, is never saved on disk. The data is only
saved in the computer's temporary memory and is erased when the procedure finishes
processing.

Modifying a Data-Entry Form
When you display the Data-entry form in Designer View, you can modify it just the way you
modify a record entry form. Remember, however, that if you add or delete fields on the Data-
entry form, you should also modify the script to reflect those changes.

© DataEase International Ltd

53

Formatting DQL Output
See DG 3 and 6 for information on how to create a document layout.

Many DQL procedures generate output. For example, when you run a procedure that contains
a list records command, DataEase processes the script and generates output, a list of records
selected by the script. Output can be displayed on the screen, printed, or saved as a file. A
visible form of output, particularly when it is printed on paper, is commonly called a report.
Some procedures create output that is not visible. A script that modifies records in the
database, for example, does not display the modified result unless the script incorporates a list
records command after the records are modified.
There are also procedures that do not generate any output. For example, a script that calls a
user menu does not generate output.
If the script contains a list records command, DataEase generates output that you can display
in a default procedure layout. Choose Script>>Preferences, DataEase displays the Script
Preferences dialog. Deselect the Create Layout after Checking DQL option.

© DataEase International Ltd

54

You can also create your own layout. When you choose Script>>Check DQL and successfully
compile the script, DataEase automatically closes the Script Editor Window and displays the
Layout Options dialog. The Layout Options dialog lets you control the appearance of your
procedure output. You can select one of several predefined layouts, modify an existing layout,
or create a custom layout on the screen. By default, DataEase automatically creates a
columnar layout using field names as column headings. You can also choose View>>Body to
view an existing layout at any time.

If you have already created a layout for the procedure, when you successfully compile the
script, DataEase displays the New DQL Layout dialog shown below.

© DataEase International Ltd

55

Chapter 3 : List Records
Using DQL to Create a Report
A query is a DQL script that asks a question about data in one or more tables. For example,
you may want to find out which Club ParaDEASE vacation spots are the most popular among
club members living in New England, or generate a list of all club members with large families.
This chapter shows how to create a simple query that lists data from the MEMBERS and
RESERVATIONS tables in the Club ParaDEASE sample application.
As you read through the example in this chapter, you may want to perform the actions
described in the text. If so, open the Club ParaDEASE sample application, then create a new
DQL Procedure following the steps beginning on the next page. If you find a DQL term you
don't understand, refer to the DQL Lexicon (Chapter 8 in this book) for an explanation.
The MEMBERS and RESERVATIONS tables share a predefined relationship based on the
linking MEMBER ID field. Both tables store the same information in this field: a unique number
assigned to each club member.
The MEMBERS table has a one-to-many relationship to the RESERVATIONS table. This
means that for any one MEMBERS record, there may be many related records in the
RESERVATIONS table (i.e., all reservations records that have the matching MEMBER ID).
In a similar manner, the RESERVATIONS table has a many-to-one relationship to the
MEMBERS table. There may be many records in the RESERVATIONS table related to any
one record in the MEMBERS table.

© DataEase International Ltd

56

The Purpose of the Query: A Report
In this example, we want our query to generate a report that displays:
• The members' last names listed in alphabetical order.
• The date of each member's most recent reservation.
• The total amount of each member's annual membership fees.

The members' names and annual fee data are stored in the MEMBERS table; the reservation
date information is stored in the RESERVATIONS table. To generate the report, we have to
create a query that tells DataEase to combine information from these two tables and display
the output as a report. The illustration below shows a sample of the report output we want
(although it hasn't yet been alphabetized).

© DataEase International Ltd

57

Telling DataEase Which Records to Select
As we create the query, we're going to add selection criteria to limit the report to only those
members who pay more than $90 per year in annual dues. In a query, the selection criteria tell
DataEase which records to select for processing. We want DataEase to select from the
MEMBERS table only those records with a value greater than 90 in the TOTAL DUE field (the
field that stores annual fee data).

In creating any query, we must tell DataEase at least three things:
• What table (or tables) contain the required data.
• Which records to process in each table.
• What action to perform on the selected records (in this example, we want to list the

information from those records in our report).

© DataEase International Ltd

58

Creating the Script
See DQL I for information on creating a new procedure document.

Before you can write a script, you must create a DQL Procedure document. Choose
File>>New>>Procedure. When DataEase displays the New Document dialog, choose a Style
Sheet if desired, then click OK to close the dialog and display the DQL Script Editor.

The for Command
The for command is frequently the first word in a query. for is used in conjunction with a table
name to tell DataEase from which table to gather information.

The for command tells DataEase to select records in a particular table and perform a group of
actions on each of those records. After all the actions are performed for the first record, the
next record is read, and all the actions are performed again. DataEase repeats this "loop" until
all selected records in the table have been processed.
The Primary table is the first table specified in a query. Usually, it is the table that holds the
key data you want to view or manipulate. MEMBERS is the Primary table in this query because
this table contains the members' names and annual fee data. You can also access data in a
Secondary table (a table related to the Primary table) in a query, as you'll see later in this
example.

Specifying Selection Criteria in a Query
DataEase needs to know if you want it to use all the records in the Primary table, or to select
only some of them based on certain selection criteria. We only want to see some of the
records-the records for members who have an annual membership fee greater than $90.00.
You tell DataEase that you want to include selection criteria by inserting the keyword with in
the query. Press the Enter key to begin a new line, then enter with into the query either by
double-clicking the command in the Commands pick list or by typing it manually. The query
appears as shown below, indicating that you want to select only some records from the
MEMBERS table.

for MEMBERS

with

© DataEase International Ltd

59

Specifically, we want DataEase to process records for only those members whose annual fees
(stored in the TOTAL DUE field) are greater than $90. The following DQL statement specifies
this criterion:

TOTALDUE > 90

To insert this selection criterion into the query, you can type it manually, or double-click TOTAL
DUE in the Columns pick list, select the Comparison Operator, >, from the Operators picklist,
and the value, 90, via the keypad

See DQL 8 for more information on using the and and or operators.

The query reads:

for MEMBERS

with TOTALDUE > 90

Although this query contains only one selection criterion, DataEase also lets you select records
based on multiple selection criteria. For example, if you want to process only the records of
members from certain states with a TOTAL DUE of more than $90, you can use the and and or
operators to join more than one selection criterion, as shown below:

However, for this query we want to select records only on the basis of the value in the TOTAL
DUE field. To tell DataEase that there are no additional selection criteria, end the statement
with a semicolon. The semicolon is required to mark the end of the selection criteria used to
select records from the primary table.

The query reads:

for MEMBERS

with TOTALDUE > 90 ;

© DataEase International Ltd

60

Note: When you enter a currency value into a script, do not include a dollar sign or commas. It
is not necessary to enter a decimal point unless you are specifying a decimal value.

Using the list records Command
See DQL 8 for more information on comparison operators.

Now that you've specified which records to process, DataEase needs to know what to do with
those records. Because we want to list data from the selected records, enter the list records
command into the query. Press Enter to begin a new line, then double-click list records in the
Commands pick list. The query reads as follows:

for MEMBERS

with TOTALDUE > 90 ;

list records

For each selected record, the list records command tells DataEase to list the items you're
about to specify in the next part of the query. The most common type of list item is the name of
a field (data column).

Note: Although DataEase does not require it, you may want to make your scripts easy to read
by indenting the list records command and the list items that follow the command. It is not
required to start each new statement on a separate line other than for the sake of readability.

Sorting and Grouping Data in a Query
Because we want to list members alphabetically by name, the first item we want in the
procedure output is the data from the LASTNAME column. Press Enter to start a new line, then
double-click LASTNAME in the Columns pick list. DataEase inserts the column name into the
script, as shown:

for MEMBERS

with TOTALDUE > 90;

list records

LASTNAME

Sorting and Grouping Operators
If you run the procedure using the script as it appears above, DataEase lists the members' last
names in the order in which they were entered into the database. DQL offers four operators
that let you specify a more useful order for your list of records. Each option appears in the
Operators pick list and is briefly explained below:

• in order sorts the records in ascending alphabetical order (putting Adams ahead of Beecher).
• in reverse sorts in descending alphabetical order (putting Zimmerman before Young).
• in groups sorts the records in ascending order into groups that have the same value in the

specified column (e.g., all members who live in Alabama could be listed together as a group
with their names arranged in alphabetical order, followed by all members from Alaska, and

© DataEase International Ltd

61

so on). You can generate statistical totals for each group, such as the total number of
members living in each state.

• in groups with group-totals is included for compatibility with previous versions of DataEase.
Both this option and "in groups" can be used to generate group statistics.

For our alphabetized report, select in order by double-clicking it in the Operators pick list or by
typing it into the query after LAST NAME. End the line with a semicolon, as shown:

LASTNAME in order ;

Note: The semicolon, which is used to end a statement, is a DQL syntax requirement. A
semicolon must appear in every for statement (after the table name, or if selection criteria are
used, after the last selection criterion) unless the for statement is nested inside another for
statement. You must also insert a semicolon after each data item specified in the list records
section of the query, except the last item.

© DataEase International Ltd

62

Displaying Data from a Related Form
See DQL 8 for more information on the sorting and grouping operators.

The query so far reads:

for MEMBERS

with TOTALDUE > 90 ;

list records

LASTNAME in order ;

Relational Operators
We want DataEase to list the date of each member's most recent reservation. However, this
information does not appear in the Columns list because reservation dates are not stored in
the MEMBERS table. Instead, the DATE field is stored in the RESERVATIONS table.
Because a pre-defined relationship exists between the RESERVATIONS table and the Primary
table (MEMBERS), we can use a relational operator to access any information we need from
the RESERVATIONS table. DQL provides seven relational operators (any, all, count of,
highest of, lowest of, mean of, and sum of) that let you retrieve information from a table related
to the Primary table.
To tell DataEase to find the most recently dated reservation for each member, enter the
highest of relational statistical operator into the script before specifying the column name.
Press Enter to start a new line, then double-click highest of in the Operators pick list or type it
directly into the script:

for MEMBERS

with TOTALDUE > 90 ;

list records

LASTNAME in order ;

highest of

This tells DataEase to read all the records (related to the current record being processed) in
the related table and report the highest value in the column among those records. After the
relational operator highest of, we must specify the name of the relationship followed by the
name of the column whose value we want to include.
Specify the RESERVATIONS table name by double-clicking it in the Tables list. DataEase
enters the table name into the script and updates the Columns list to display the names of
columns in the RESERVATIONS table.

© DataEase International Ltd

63

Specify the DATE column name by double-clicking it in the Columns list. DataEase enters it
into the script. End the statement with a semicolon. The script now reads as follows:

for MEMBERS

with TOTALDUE > 90 ;

list records

LAST NAME in order ;

highest of RESERVATIONS DATE ;

We want this procedure to list one more item: the membership fee paid by each member. This
information is stored in the TOTAL DUE column in the MEMBERS table, so highlight
MEMBERS in the Tables pick list. DataEase displays that table's column names in the
Columns list.
Double-click TOTAL DUE in the Columns list to enter this item into the script, as shown:

for MEMBERS

with TOTALDUE > 90 ;

list records

LAST NAMEin order ;

highest of RESERVATIONS DATE ;

TOTAL DUE

© DataEase International Ltd

64

Checking a Script for Errors
The final step in creating a script is to check it for missing punctuation, incorrect table or
column names, and other syntax errors. Choose Script>>Check DQL. DataEase scans the
script and finds that it is not quite complete. A message similar to the one shown below
appears:

Click OK to close the message box. DataEase places the cursor at the location of the error and
lets you add the missing period. The completed script reads:

for MEMBERS

with TOTALDUE > 90 ;

list records

LASTNAME in order ;

highest of RESERVATIONS DATE ;

TOTALDUE .

You cannot run a procedure until the script passes a final syntax check, so choose
Script>>Check DQL once again.

© DataEase International Ltd

65

Creating a Procedure Layout
After you successfully complete the Check DQL step, DataEase normally displays the Layout
Options dialog, which lets you specify an initial procedure layout and select other options.

Click OK to accept the default row and column (Table) format. DataEase closes the dialog and
generates the layout shown below.

See DQL 8 for more information on relational and relational statistical operators.

Modifying the layout for the output generated by a DQL Procedure is done just like modifying a
form or report layout. You can create new objects, including images and buttons, modify the
size and appearance of existing objects, and apply Styles to give your outputs a consistent
look.

© DataEase International Ltd

66

Before running the procedure, replace the automatically generated column headings with
those illustrated in the figure below. To replace a column heading, delete an existing column
heading, click on the Text tool on the Object Palette, then click on the layout where you want to
create the new column heading. Enter the desired text, then set its style by choosing a style
from the from the Styles list box on the Toolbar. (Or simply edit the column heading text
object).

© DataEase International Ltd

67

Saving and Running a Procedure
To save the procedure, choose File>>Save. When DataEase displays the Document Save As
dialog, type RECENT RESERVATIONS in the entry box, then click OK. DataEase saves the
document.

To run the procedure, click on the User View button. The figure below shows how the
procedure output might look when DataEase displays the output on the screen.

As you see, the selected members (those whose annual fee is greater than $90) are listed in
alphabetical order along with their annual membership fees and the date of their last
reservations.

© DataEase International Ltd

68

Chapter 4 : Control Procedures
Using DQL to Manage Your Application
In addition to generating simple reports like the list records example described in the preceding
chapter, the DataEase Query Language can also be used to link documents and database
processing procedures together to manage an application. By combining DQL control
structures and processing commands, you can easily navigate from one document to another
and automatically add, process, manipulate, and delete data from multiple database tables
without manually keying the information into each and every record.

Types of DQL Commands
To control all aspects of an application, the DQL is divided into three groups of commands
(see list above):
Processing Commands are used to add, modify, delete, or display the data in the application.
Control Commands are used to manage access to the documents in the application.
Procedural Commands are used to organize and control the flow of actions in a DQL
Procedure. These commands can be used to conditionally invoke Processing and Control
commands.

Note: In the character-based version of DataEase, DQL processing is divided into two
different types of procedures: Control (program control) and Processing (database
manipulation) procedures. Although DataEase does not require you to divide your scripts into
separate Control and Processing procedures, doing this makes your scripts easier to
understand and enhances concurrent access to data.
The automated Club ParaDEASE reservations system discussed in this chapter has been
divided into three Processing procedures and a Control procedure to facilitate understanding,
but all the commands could be combined in a single script. Other benefits gained by dividing
the Club ParaDEASE reservations system into several DQL Procedures are discussed at
appropriate places throughout the chapter.
This chapter is designed to demonstrate every element in the DataEase Query Language in a
realistic context. The chapter shows you how to use many basic programming techniques such
as processing loops, variables, and data manipulation functions to manage a complex
business application.

© DataEase International Ltd

69

The examples in this chapter show how to combine DQL Processing, Control, and Procedural
commands, into a powerful procedure that is used to control the entire Club ParaDEASE
reservation system, including illustrations on how to maintain an inventory of available rooms
at each club, calculate discounts, and generate invoices. Although your application may be
very different, the manner in which you use individual commands is similar regardless of the
type of business you are planning to automate.
The examples in this chapter use the set of tables shown below. The RESERVATION DETAIL
and CLUB ROOMS forms are standard, single-level forms. The RESERVATIONS form is a
Multiform; the fields shown in italic are actually a view of the RESERVATION DETAIL
Subform. The MEMBERS table is also a Multiform; the fields shown in italic are a view of the
FAMILY MEMBERS Subform. Tables that have a predefined relationship are indicated by the
connecting lines. Relationship Match fields are shown in bold.

© DataEase International Ltd

70

Procedure 1: INPUT RESERVATIONS
The first of three procedures that we'll combine into a Control procedure manages how travel
reservations are entered into the Club ParaDEASE application. Before we actually save a
reservation record, however, we need to ensure that there are adequate vacancies at the
requested club on the specified date. The INPUT RESERVATIONS procedure uses a Data-
entry form to let us check on room availability. Based on the results of our Data-entry inquiry,
we can tell DataEase to enter the reservation record or display a warning if there aren't enough
accommodations at the destination club.
As shown below, the INPUT RESERVATIONS Data-entry form contains four fields: CLUB ID,
CLUB NAME, DEPARTURE DATE, and ROOMS REQUIRED. The CLUB ID and
DEPARTURE DATE fields are used to specify the date and destination for the reservation. The
ROOMS REQUIRED field is used to indicate how many rooms the caller wants to reserve. The
CLUB NAME field contains a Derivation formula that looks up the name of the club.
The Data-entry form also contains two buttons. The OK button invokes the Save Record
action, which causes DataEase to begin processing the script. The Cancel button invokes the
Close Document action, which tells DataEase to close the INPUT RESERVATIONS
procedure.

When the reservation clerk enters the CLUB ID and DEPARTURE DATE in the Data-entry
form, DataEase uses an ad hoc relationship to find the matching record in the CLUB ROOMS
table. The matching record tells DataEase how many rooms are available at the destination
club on the requested date.

In addition to checking room availability at the destination club, the INPUT RESERVATIONS
procedure posts new member information from the MEMBERS table. This information is
entered into two related tables: the appropriate member information is posted into the
RESERVATIONS table (using the data entered into the Data-entry form) and the number of
vacancies is updated in the CLUB ROOMS table.

© DataEase International Ltd

71

Script for the INPUT RESERVATIONS Procedure
The complete script for the INPUT RESERVATIONS procedure is shown below:

if data-entry ROOMS REQUIRED > any CLUB ROOMS with

(CLUB ID = data-entry CLUB ID and DEPARTURE DATE =

data-entry DEPARTURE DATE) VACANCIES then

message "Not enough rooms are available. |

Please choose another club or date." window.

else

while current status not = 1 do

input using MEMBERS into "TEMPMEM" .

case (current status)

value 1 :

exit

value 2 :

modify records in CLUB ROOMS with

(CLUB ID = data-entry CLUB ID and

DEPARTURE DATE = data-entry DEPARTURE DATE)

VACANCIES:= VACANCIES- data-entry ROOMSREQUIRED.

enter a record in RESERVATIONS

copy all from TEMPMEM ;

CLUB ID:= data-entry CLUB ID;

DEPARTURE DATE := data-entry DEPARTURE DATE ;

ROOMSREQUIRED := data-entry ROOMSREQUIRED .

record entry RESERVATIONS .

others

message "You are not authorized to |

modify or delete records " window .

end

end

end

Explanation of the Script
Now, let's examine this script one statement at a time:

if data-entry ROOMS REQUIRED > any CLUB ROOMS with

(CLUB ID = data-entry CLUB ID and DEPARTURE DATE

© DataEase International Ltd

72

 = data-entry DEPARTURE DATE) VACANCIESthen

The script begins with an if Command. The if Command tells DataEase to execute one action
(the action specified after the keyword then) if the statement that follows the if command is
true, and a different action (the action specified after the keyword else) if the statement is false.
In our example, the if command tells DataEase to check the number of rooms requested in the
Data-entry form against the number in the VACANCIES field in the matching record in the
CLUB ROOMS table. If the number in the VACANCIES field in the CLUB ROOMS table is
greater than the number in the ROOMS REQUESTED field on the Data-entry form, DataEase
processes the reservation. Otherwise, DataEase displays the message:

Not enough rooms are available.

Please choose another club or date.

In order to check the VACANCIES field in the matching record in the CLUB ROOMS table,
DataEase needs to know how the record in the Data-entry form is related to the record(s) in
the CLUB ROOMS table. The script tells DataEase how to find the matching record in the
CLUB ROOMS table by specifying an ad hoc relationship:

(CLUB ID = data-entry CLUB ID and DEPARTURE DATE = data-entry

DEPARTURE DATE)

See DG 8 for more information on DataEase relationships.

An ad hoc relationship is a DQL expression that tells DataEase how the records in two
different forms are related when no permanent relationship has been defined in the DataEase
Relationships form. The ad hoc relationship expressed above tells DataEase to find the record
in the CLUB ROOMS table that has the same CLUB ID and DEPARTURE DATE as the values
entered in the Data-entry form.
For all purposes, an ad hoc relationship is similar to a relationship stored in the Relationships
form, except an ad hoc relationship is only valid while the procedure is in progress (the
relationship is discarded when the procedure completes execution).
The next section of the INPUT RESERVATIONS script (below) uses two Procedural
commands, while and case, and the input using Processing command to tell DataEase what to
do if there are sufficient vacancies at the destination club on the date requested in the Data-
entry form.

while current status not = 1 do

input using MEMBERS into "TEMPMEM" .

case (current status)

value 1 :

exit .

value 2 :

The next section of the script tells DataEase to modify the value stored in the VACANCIES
field in the matching record in the CLUB ROOMS table by subtracting the number of rooms
requested on the Data-entry form.

© DataEase International Ltd

73

 modify records in CLUB ROOMS with

(CLUB ID = data-entry CLUB ID and

DEPARTURE DATE = data-entry DEPARTURE DATE)

VACANCIES: = VACANCIES-data-entry ROOMSREQUIRED.

The last section of the script tells DataEase to enter a new record in the RESERVATIONS
form detailing all the required personal and family information, destination club, reservation
date, etc.

enter a record in RESERVATIONS

copy all from TEMPMEM ;

CLUB ID:= data-entry CLUB ID;

DEPARTURE DATE := data-entry DEPARTURE DATE ;

ROOMSREQUIRED := data-entry ROOMSREQUIRED .

record entry RESERVATIONS .

Finally, if the caller decides to cancel at any point, we want DataEase to discard all the data
entered by the reservations clerk. Therefore, we need a way to gather information from the
caller and then tell DataEase how to process it.
The DQL case and input using commands can be used together to gather information during a
DQL Procedure and then process the information in several different ways. Similar to the if
command, the DQL case command tells DataEase to perform one of a number of possible
actions based on which value is stored in the current status variable. The current status
variable is a special DQL system variable that tells DataEase which menu command or
keystroke the user executes after entering data as shown below.

Current Status Values

When the user finishes entering data in
the temporary input form and makes
this
menu selection...

...DataEase stores this value in
the current status variable

File>>Close 1
File>>Save As New Record 2
File>>Save 3
File>>Delete 4

Since much of the information required in the MEMBERS form must also be entered into the
RESERVATIONS form, we only want to input this information once and then let DataEase
automatically copy it into the appropriate database tables. The DQL input using command tells
DataEase to display a database form as a temporary form that is used to gather the
information which will later be posted into the appropriate database tables.

© DataEase International Ltd

74

The while command sets up a processing loop. In our example, the while command tells
DataEase to continue processing each new reservation in the manner described above as long
as the value in the current status variable does not equal one. When current status equals one,
DataEase exits the while loop and resumes processing the remainder of the script.
The diagram below shows the flow of information from the TEMPMEM form, depending on
which processing key is used.

Now that you have an overview, let's examine the remainder of the INPUT RESERVATION
script introduced earlier in a little more detail.
The first line of the script reads:

while current status not = 1 do

This line tells DataEase to continually loop through and process each of the statements that
follow until the current status variable indicates that the user chose File>>Close to close the
input form.
The next line in the script uses the input using command. The input using command provides
all the facilities of record entry under the control of the DataEase Query Language. As each
record is entered into the TEMPMEM form, the record is held in memory until a processing
action is invoked. When an action is initiated, the script takes control and processes the
current record according to the instructions in the script:

© DataEase International Ltd

75

input using MEMBERS into "TEMPMEM" .

This line tells DataEase to display the TEMPMEM form. In our example, we'll copy member
information to the RESERVATIONS form and update CLUB ROOMS data.
The next line tells DataEase to check the value in the current status variable:

case (current status)

The case command tells DataEase to compare an expression (e.g., current status) to a series
of values and execute a different action based on which comparison is true.
The next two lines tell DataEase what to do if the value of the current status variable is "1":

value 1 :

exit .

Remember that the value in the current status variable is set to one when the user invokes a
close document action. The exit command tells DataEase to stop processing the script. When
the user chooses File>>Close, DataEase terminates all script processing.
The next line tells DataEase to check the current status variable for a value of "2" (the action
invoked when you click a Save button or icon or choose Edit>>Save As New Record). If the
value of the current status variable is "2", the following section of the script is executed:

The first line tells DataEase to save a new record in the RESERVATIONS table. The
subsequent lines tell DataEase which information to enter as the new record. The enter a
record command can be used with copy all from or to specify individual fields. In our example,
we do a combination of both. Copy all from TEMPMEM tells DataEase to copy all field values
in TEMPMEM to the corresponding fields (e.g., those that have the identical names) in
RESERVATIONS. Any fields whose name differs must be dealt with on an individual basis as
demonstrated in the last three lines of the above example. The enter a record command is
terminated by a period.
Since all the information needed to enter a new reservation isn't included in the
RESERVATIONS form, the next line of the script provides direct record entry access to
RESERVATIONS.

© DataEase International Ltd

76

record entry reservations .

The record entry command lets you perform traditional record entry operations from within a
procedure. In the RESERVATIONS form we can enter additional information (e.g., names of
family members included in the reservation) not included in the MEMBERS form. The record
entry command is terminated by a period. This is the last command executed when the user
invokes a save action.
The next section tells DataEase what to do if the user presses any of the remaining processing
keys:

others

message "You are not authorized to modify or

delete records. " window .

end

The others command encompasses any value that is not specifically tested with a value
command. In our example, that means any value other than 1 or 2 If the user invokes a
modify or delete action the value in the current status variable is set to 3 (modify) or 4 (delete).
For the sake of simplicity, we are disallowing those actions. If the user tries to modify or delete
a record, DataEase displays the message shown above. The period terminates the message
command and the end terminates the case command since there are no other values to test.

Note: If we hadn't included the others command or additional value commands to handle the
current status values of 3 and 4, DataEase would simply ignore any attempt the user made to
modify or delete a record.

The only commands remaining are two end commands:
end

end

To satisfy the DQL syntax requirements, a script must contain one end command for each for,
if , while and/or case command.
The complete script for the INPUT RESERVATIONS procedure reads:

if data-entry ROOMS REQUIRED > any CLUB ROOMS with

(CLUB ID = data-entry CLUB ID and DEPARTURE DATE =

data-entry DEPARTURE DATE) VACANCIES then

message "Not enough rooms are available. |

Please choose another club or date." window.

else

while current status not = 1 do

input using MEMBERS into "TEMPMEM" .

case (current status)

value 1 :

exit

© DataEase International Ltd

77

value 2 :

modify records in CLUB ROOMS with

(CLUB ID = data-entry CLUB ID and

DEPARTURE DATE = data-entry DEPARTURE DATE)

VACANCIES:= VACANCIES- data-entry ROOMSREQUIRED.

enter a record in RESERVATIONS

copy all from TEMPMEM ;

CLUB ID:= data-entry CLUB ID;

DEPARTURE DATE := data-entry DEPARTURE DATE ;

ROOMSREQUIRED := data-entry ROOMSREQUIRED .

record entry RESERVATIONS .

others

message "You are not authorized to |

modify or delete records " window .

end

end

end

This script checks the availability of rooms at the club and date requested. If there aren't
adequate accommodations, it displays an error message, then redisplays the Data-entry form
so the data entry clerk can try another club/date combination. Otherwise, DataEase saves a
new record in the RESERVATIONS form and decrements the number of available rooms at
the requested club on the specified date.

Saving the Procedure
If you are creating this procedure as you read, before proceeding to the next section, choose
File>>Save As. DataEase displays the Document Save As dialog.
Enter INPUT RESERVATIONS as the document name and click OK. DataEase saves the
procedure on disk and returns you to the script. After the procedure is saved on disk, you can
later execute the procedure by any of the following methods:
• Choose File>>Open, select the procedure name from the list of documents DataEase

displays, then click OK. Open the procedure in User View to execute it or in Designer View
to view or modify it.

• If the procedure is already open in Designer View, choose File>>User View.

Specify the name of the procedure in a run procedure command within a script or on a custom
menu.
Next, we'll create a procedure that determines the discount given to each member based on
the number of children and adults included in a reservation.

© DataEase International Ltd

78

Procedure 2: CALCULATE DISCOUNTS
The second procedure is based on the fact that Club ParaDEASE discounts trip reservations
based on the number of children and adults included in each reservation. The object of the
procedure is to calculate the following totals:
• Number of children going on the trip.
• Number of adults going on the trip.
• Dollar amount of the trip.
• Dollar amount of the discount applied to the cost of the trip.

After each of these totals is determined, we use a variable (an expression that represents a
varying value) to store the calculated result. Variables let us use the values as often as we
want within the procedure without repeating the formulas used to derive them.
The script for the CALCULATE DISCOUNTS procedure must tell DataEase to do all of the
following:
• Create five separate variables to store: each member's reservation total, the number of

children, the number of adults, each member's total discount amount, and the
RESERVATION ID.

• Set up discounts based on the number of children and adults with the discounts expressed
as a dollar amount to be subtracted from the total reservation price.

• Process the related RESERVATION DETAIL records, calculating the sum of the
RESERVATION PRICE for all family members included in the reservation.

• Modify the RESERVATIONS records, entering each reservation's final price in the TOTAL
DUE field.

Script for the CALCULATE DISCOUNTS Procedure
The full script for the CALCULATE DISCOUNTS procedure reads as follows:

define temp "KIDS" Number .

define temp "ADULTS" Number .

define global "DISCOUNT" Number .

define global "RESTOTAL" Number .

define global "RESERVATION#" Number .

for RESERVATIONS

with CONFIRMED = NO ;

assign temp KIDS := count of RESERVATION DETAIL

named "KIDCOUNT" with (AGE STATUS = "child").

assign temp ADULTS := count of RESERVATION

DETAIL named "ADULTCOUNT" with (AGE STATUS =

 "adult").

assign global RESTOTAL := sum of RESERVATION

DETAIL RESERVATION PRICE .

assign global RESERVATION # := RESERVATION ID .

case (temp KIDS)

© DataEase International Ltd

79

 value = 1 :

assign global DISCOUNT := global RESTOTAL * 0.05 .

 value = 2 :

assign global DISCOUNT := global RESTOTAL * 0.10 .

 value >= 3 :

assign global DISCOUNT := global RESTOTAL * 0.15 .

end

if temp ADULTS > 2 then

assign global DISCOUNT := global DISCOUNT + ((
global

RESTOTAL - global

DISCOUNT) * 0.05) .

end

modify records

TOTAL DUE := global RESTOTAL- (global RESTOTAL *

global DISCOUNT).

run procedure RESERVATION INVOICE .

end

Explanation of the Script
Notice first that this script does not start with a for command. When using variables in a script,
you should define the variables at the beginning. Defining variables at the start of a procedure
makes it easy to find (and change) the variables if necessary, and it also makes the script
easier to follow.
Now, let's look at this script one statement at a time.
The first line in the script creates and names a temporary variable to hold the total number of
children taking the trip:

define temp "KIDS" Number ; .

This first line has five elements:
• The DQL define command. This tells DataEase to create a variable.
• The keyword temp. This tells DataEase the variable is a temporary variable, not a global

variable.
• The name of the variable (KIDS). The name of a variable must be enclosed in quotes when it

is first specified in a script.
• The type of the variable (Number). A variable can be a number, a text expression, or any

other DataEase field type except Choice, Dollar, Sequenced ID, or Yes/No.
• A period. The define command must always end with a period.

The first five lines of the script are similar in purpose:
define temp "KIDS" Number .

define temp "ADULTS" Number .

© DataEase International Ltd

80

define global "DISCOUNT" Number .

define global "RESTOTAL" Number .

define global "RESERVATION#" Number .

These statements create two temporary variables and three global variables. The temporary
variables include one to store the number of children and one to store the number of adults.
Global variables are used to store the total reservation price, the discount amount applied to
each reservation total, and the RESERVATION ID. A global variable can be passed from one
procedure to another, avoiding the need to recalculate the value each time you use it. Since
the RESERVATIONS form doesn't store the discount amount or the pre-discount total, we'll
store both values in global variables so they can be passed along and used in the next
procedure. The RESERVATION ID is also stored in a global variable so the ID can be passed
to the next procedure to identify which record to process.
The next part of the script tells DataEase the name of the primary form and which records to
select:

for RESERVATIONS

with CONFIRMED = NO ;

The group of records we want DataEase to select are the unconfirmed RESERVATIONS
records. Reservations are not considered confirmed until the control procedure described at
the end of this chapter is complete. This for command processes each record that stores the
value NO in the CONFIRMED field.
The next part of the script tells DataEase how to calculate the number of children taking the
trip (the value we want to assign to the "KIDS" variable):

assign temp KIDS := count of RESERVATION DETAIL

named "KIDCOUNT" with (AGE STATUS = "child").

The above statement uses the DQL assign command:

assign temp KIDS :=

This statement tells DataEase to assign KIDS a value. The assignment operator symbol (:=)
follows the name of the variable. This operator serves the same purpose with a temporary
variable that it did in the previous procedure following a modify records command. The value of
the variable is determined by the expression on the right of the symbol. The remainder of this
line reads:

count of RESERVATION DETAIL named "KIDCOUNT"

with (AGE STATUS = "child");

This part of the assign statement tells DataEase what value to assign to the KIDS variable -
the number of related records that store the value child in the AGE STATUS field.
DataEase lets you add criteria to a predefined relationship (e.g., with AGE STATUS = "child").
This is another use of an ad hoc relationship. When you create an ad hoc relationship in this
manner, any additional criteria you specify applies to the relationship for the remainder of the

© DataEase International Ltd

81

script. But before we stipulate the selection criterion (AGE STATUS = "child"), we use the
named operator to rename the relationship.
In addition to creating ad hoc relationships, you can use the named operator to provide a
custom relationship name, much the way you do in the Relationships form. When you rename
a relationship in a script, the original predefined relationship remains unchanged. This feature
lets you use either relationship throughout the remainder of the script: the original predefined
relationship or the modified, renamed relationship.

Note: You can't use the same relationship name to specify two different sets of ad hoc criteria.
If you want to specify two or more sets of criteria for the same relationship, you must provide a
unique name for each new relationship. The unique name lets DataEase distinguish different
groups of records selected from the same table.

Prior to this line in the sample script, the relationship between RESERVATIONS and
RESERVATION DETAIL is based on the original Match fields specified in the Relationships
form (e.g., RESERVATION ID = RESERVATION ID). After this line in the script, the
relationship has changed. The new relationship still links records based on the matching
RESERVATION ID but now RESERVATIONS records are related only to those matching
RESERVATION DETAIL records that contain the value child in the AGE STATUS field.
Because we established a unique name for the new relationship (KIDCOUNT), we still have
access to the original relationship (RESERVATION DETAIL), which we can use in its original
form or create an ad hoc relationship again using different criteria.
The next two lines of the script serve a similar purpose:

assign temp ADULTS := count of RESERVATION DETAIL

named "ADULTCOUNT" with (AGE STATUS = "adult").

This time the assign statement tells DataEase what value to assign to the ADULTS variable:
the number of related records that store the value adult in the AGE STATUS field. Because
we still want to be able to access the original RESERVATION DETAIL relationship to calculate
the total cost of the reservation later in the script, we again rename the relationship
(ADULTCOUNT) before we specify the ad hoc criteria.
The next line of the script assigns a value to the global variable that stores the total price of the
reservation:

assign global RESTOTAL := sum of RESERVATION

DETAIL RESERVATION PRICE .

This line tells DataEase to process all the related RESERVATION DETAIL records (not just the
related adult or child records) and to sum the value in the RESERVATION PRICE field. Notice
that this time we use the original relationship rather than adding any ad hoc criteria because
we want DataEase to process all the related records.
The next line of the script assigns a value to the last of the global variables:

assign global RESERVATION# := RESERVATION ID .

© DataEase International Ltd

82

This line tells DataEase to assign the value in the RESERVATION ID field in the current record
to the RESERVATION # variable. We will use this variable as the selection criteria in the next
procedure to identify the record we want DataEase to process.
Because the assign statements are contained within the for loop, each variable is reassigned
each time a new record is processed by the for command.
The whole script up to this point reads as follows:

define temp "KIDS" Number .

define temp "ADULTS" Number .

define global "DISCOUNT" Number .

define global "RESTOTAL" Number .

define global "RESERVATION" Number .

for RESERVATIONS

with CONFIRMED = NO ;

assign temp KIDS := count of RESERVATION DETAIL

named "KIDCOUNT" with (AGE STATUS = "child") .

assign temp ADULTS := count of RESERVATION

DETAIL named "ADULTCOUNT" with (AGE STATUS =

 "adult") .

assign global RESTOTAL := sum of RESERVATION

DETAIL RESERVATION PRICE .

assign global RESERVATION := RESERVATION ID .

The next section of the script begins with a case command:

case (temp KIDS)

The discount applied to each reservation is determined first by the number of children taking
the trip. An additional discount is given for reservations that include more than two adults. This
line of the script tells DataEase to check the value currently stored in the KIDS variable.
Remember that each time DataEase cycles through the for loop, the value in each variable is
rederived.
The next two lines of the script tell DataEase what to do if one child is included in the
reservation:

value = 1 :

assign global DISCOUNT := global RESTOTAL * 0.05 .

If the value in the KIDS variable is one, DataEase assigns the DISCOUNT variable a value
equal to five percent of the total reservation cost.
The next four lines of the script are similar to the last two:

value = 2 :

© DataEase International Ltd

83

assign global DISCOUNT := global RESTOTAL * 0.10 .

value >= 3 :

assign global DISCOUNT := global RESTOTAL * 0.15 .

end

If the value in the KIDS variable is not 1, DataEase checks the next value statement. If the
value is 2, DataEase assigns the DISCOUNT variable a value equal to 10 percent of the
reservation total. If the value in the KIDS variable is 3 or more, DataEase assigns the
DISCOUNT variable a value equal to 15 percent of the reservation total. The next line of the
script contains an end command. This end terminates the case command.
The next three lines of the script tell DataEase to increase the discount amount if more that
two adults are included in the reservation:

if temp ADULTS > 2 then

assign global DISCOUNT := global DISCOUNT + ((

global RESTOTAL - global DISCOUNT) * 0.05) .

end

Each reservation total is discounted an additional 5 percent for three or more adults. The if
command checks the value in the ADULTS variable. If that value exceeds 2, the value in the
DISCOUNT variable is reassigned to figure in the additional 5 percent. The parentheses in the
assign statement clarify the sequence of mathematical operations. When parentheses are
used, DataEase performs math operations from the inside out. In this example, DataEase
subtracts the current value in the DISCOUNT variable from the amount held in the RESTOTAL
variable. The result is multiplied by 5 percent and that value is added to the original discount
dollar amount.
The end command terminates the if command.
The last section of the query modifies the RESERVATIONS record to enter the discounted
reservation cost in the TOTAL DUE field:

modify records

TOTAL DUE := global RESTOTAL - global DISCOUNT.

Because this portion of the script is still under the control of the for command, DataEase
modifies just the record currently being processed. The TOTAL DUE field is set equal to the
total cost of the reservation minus the discount amount DataEase calculated earlier in the
script. The modify records processing command is terminated by a period.
The final command tells DataEase to run another procedure:

run procedure RESERVATION INVOICE .

end

run procedure is a Control command that tells DataEase to run another procedure that prints
an invoice for the current RESERVATIONS record. Because this command is within the for
loop, the RESERVATION INVOICE procedure is run once for each record processed by the for
command. The RESERVATION INVOICE procedure is explained in the next section of this

© DataEase International Ltd

84

chapter. The only remaining command is another end command. This end terminates the for
loop.
The completed script for the CALCULATE DISCOUNTS procedure reads as follows:

define temp "KIDS" Number .

define temp "ADULTS" Number .

define global "DISCOUNT" Number .

define global "RESTOTAL" Number .

define global "RESERVATION #" Number .

for RESERVATIONS

with CONFIRMED = NO ;

assign temp KIDS := count of RESERVATION DETAIL

named "KIDCOUNT" with (AGE STATUS = "child") .

assign temp ADULTS := count of RESERVATION

DETAIL named "ADULTCOUNT" with (AGE STATUS =

 "adult") .

assign global RESTOTAL := sum of RESERVATION

DETAIL RESERVATION PRICE .

assign global RESERVATION # := RESERVATION ID .

case (temp KIDS)

 value = 1 :

assign global DISCOUNT := global RESTOTAL * 0.05 .

 value = 2 :

assign global DISCOUNT := global RESTOTAL * 0.10 .

 value >= 3 :

assign global DISCOUNT := global RESTOTAL * 0.15 .

end

if temp ADULTS > 2 then

assign global DISCOUNT := global DISCOUNT + ((
global

RESTOTAL - global

DISCOUNT) * 0.05) .

end

modify records
TOTAL DUE := global RESTOTAL - (global RESTOTAL *

global DISCOUNT) .

run procedure RESERVATION INVOICE .

end

If you are creating this script as you read, choose File>>Save to save the procedure on disk.
When DataEase asks you to name the procedure, enter CALCULATE DISCOUNTS.

© DataEase International Ltd

85

Procedure 3: RESERVATION INVOICES
The RESERVATION INVOICES procedure tells DataEase what information to print on each
reservation invoice.

The information we want to appear on the Club ParaDEASE invoice includes the following
items:

• RESERVATION ID.
• MEMBER ID.
• DATE
• MEMBER NAME.
• ADDRESS.
• DESTINATION.
• DEPARTURE information.
• FIRST and LAST NAME of each family member taking the trip.
• AGE STATUS of each family member.
• PRICE for each family member.
• DISCOUNT.

© DataEase International Ltd

86

• Total Price for all family members.
• Cost of reservations.

Script for the RESERVATION INVOICES Procedure
To generate a report that can be formatted like the invoice shown on the previous page, the
script includes the following lines:

define global "RESTOTAL" Number .

define global "DISCOUNT" Number .

define global "RESERVATION#" Number .

for RESERVATIONS

with CONFIRMED = NO ; ;

 list records

RESERVATION ID in groups ;

MEMBER ID ;

DATE ;

FIRST NAME ;

LAST NAME ;

STREET ;

CITY ;

STATE ;

ZIP ;

CLUB NAME ;

CLUB LOCATION ;

DEPARTURE DATE ;

DEPARTURE CITY ;

all RESERVATION DETAIL FIRST NAME ;

all RESERVATION DETAIL LAST NAME ;

all RESERVATION DETAIL AGE STATUS ;

all RESERVATION DETAIL RESERVATION PRICE ;

global DISCOUNT ;

global RESTOTAL ;

global RESTOTAL - global DISCOUNT .

In addition to listing information on the invoice, we also want this procedure to do one last
important task: change the value in the CONFIRMED field from No to Yes. This is specified by
adding three more lines to the script:

modify records

CONFIRMED := YES .

end

© DataEase International Ltd

87

Explanation of the Script
See DG 6 for information on how to create the layout of a report document.

Now, let's review this script line by line.

for RESERVATIONS

The for command selects the script's Primary formthe RESERVATIONS form.

with CONFIRMED = NO ;

list records

The with operator introduces the record selection criteria: process only records with the value
No in the CONFIRMED field. The list records command tells DataEase what items we want to
appear in the output. These items (called list items) follow the list records command. In this
report there are two types of list items: (1)fields from the Primary and/or Secondary forms,
and(2)values that were calculated during the processing of the previous script but do not
actually appear on any database forms. Those values were passed to this procedure via global
variables.
The next line tells DataEase to group RESERVATION DETAIL records with the same
RESERVATION ID together and to arrange the groups in ascending order.

RESERVATION ID in groups ,

Each of the following lines specifies a field on the RESERVATIONS form. Here, we are telling
DataEase to include the value in each of these fields in the report output.

MEMBER ID ;

DATE ;

FIRST NAME ;

LAST NAME ;

STREET , ;

CITY ;

STATE ;

ZIP ;

CLUB NAME ;

CLUB LOCATION ;

DEPARTURE DATE ;

DEPARTURE CITY ;

The next four lines are used to retrieve information stored in the related RESERVATION
DETAIL file.

© DataEase International Ltd

88

all RESERVATION DETAIL FIRST NAME ;

all RESERVATION DETAIL LAST NAME ;

all RESERVATION DETAIL AGE STATUS ;

all RESERVATION DETAIL RESERVATION PRICE ;

Each of these four lines specifies a field on the RESERVATION DETAIL form. The relational
operator all tells DataEase to find every RESERVATION DETAIL record that has the same
RESERVATION ID as the RESERVATIONS record currently being processed.
The next line lists one of the three global variables:

global DISCOUNT ;

In the previous procedure, we calculated the discount amount to apply to each reservation
based on the number of children and adults included in the reservation. The value DataEase
calculated was assigned to a global variable called DISCOUNT. Since the amount of the
discount was calculated in the previous procedure, we don't have to calculate the discount
again in the current procedure. We simply use a global variable to pass the value to this
procedure.
The next line lists another global variable whose value was calculated in the previous
procedure:

global RESTOTAL ;

In the last procedure we told DataEase to sum the PRICE field values in all the related
RESERVATION DETAIL records for each RESERVATIONS record processed. That calculated
value was then assigned to the RESTOTAL variable. This line tells DataEase to list the value
in the RESTOTAL variable in the printed invoice. This information is displayed as the overall
Reservation Total on the invoice.
The final line under the list records command calculates the net total for the invoice:

global RESTOTAL - global DISCOUNT .

This line tells DataEase to subtract the value in the global DISCOUNT variable from the
amount stored in the global RESTOTAL variable. The result is the net total for each order,
taking into account each member's discount as calculated in the previous procedure. This
information is displayed as the Total Due on the invoice.
The last three lines of the script tell DataEase to modify each record:

modify records

CONFIRMED := YES .

end

As each RESERVATIONS record is processed, DataEase changes the value in the
CONFIRMED field from No to Yes. This ensures that a reservation that has already been
processed will not be processed again.

© DataEase International Ltd

89

Procedure 4: PROCESS RESERVATIONS
As we mentioned at the start of this section, a Control procedure can be used to manage
almost every element of DataEase, performing tasks such as combining menus, input forms,
procedures, conditional actions, and output into fully automated business applications.
A Control procedure can be used to:
• Execute any DataEase menu option from within the procedure. In this respect, Control

procedures are similar to chain menus. However, Control procedures let you combine DQL
conditional logic with the chain menu processing capabilities.

• Link DQL Procedures together and execute them automatically.
• Pass values among procedures.

Now, we'll demonstrate how Club ParaDEASE can link the preceding procedures together to
automate the entire process for entering and posting reservations, calculating reservation
discounts, and printing reservation invoices. To link the procedures, you must create a new
script that combines the two Processing procedures into a Control procedure.
The script for this Control procedure is listed immediately below. Following the script, the
purpose of each line in the Control procedure is explained.

Script for the PROCESS RESERVATIONS Control Procedure
The Control procedure script contains only five lines:

define global "DISCOUNT" Number .

define global "RESTOTAL" Number .

define global "RESERVATION#" Number.

run procedure "INPUT RESERVATIONS" .

run procedure "CALCULATE DISCOUNTS" .

Explanation of the Control Procedure
The first three lines of the Control procedure define the global variables that are used in
procedures 2 and 3:

define global "DISCOUNT" Number .

define global "RESTOTAL" Number .

define global "RESERVATION #" Number .

To pass a global variable from one procedure to another, the variable must be defined
identically in each procedure that uses it as well as the main Control procedure. A global
variable can be assigned a value just once, and used by each individual procedure, or
manipulated and reassigned in one or more procedures. The variables defined in this control
procedure don't have values assigned to them until the CALCULATE DISCOUNTS procedure
begins processing.

© DataEase International Ltd

90

The fourth line of the Control procedure specifies:

run procedure "INPUT RESERVATIONS" .

The run procedure command executes a procedure just as if you chose File>>Open to run a
procedure. When DataEase reaches the end of the procedure, the next command is
automatically executed in the Control procedure.
When the INPUT RESERVATIONS procedure is run, DataEase creates a new record in the
RESERVATIONS form for each new reservation, copying the information from the TEMPMEM
temporary holding form. Finally, the number of rooms required for the new reservation are
subtracted from the VACANCIES field in the CLUB ROOMS form.
The fifth line specifies:

run procedure "CALCULATE DISCOUNTS" .

This command executes the CALCULATE DISCOUNTS procedure that: (1) calculates the total
dollar amount of the reservation, (2)calculates the total number of children and adults included
in the reservation, and (3) calculates the dollar amount of the discount to be applied to the cost
of the reservation.
The third procedure, RESERVATION INVOICES is called from within the CALCULATE
DISCOUNTS procedure so RESERVATION INVOICES is not included in the control
procedure. Since the define and run procedure commands do not require any special
terminating command other than a period, no further commands are required.

Summary
In this example, when you choose File>>Open and select the PROCESS RESERVATIONS
Control procedure, DataEase displays the Data-entry form, then the MEMBERS form. You can
then enter records in the MEMBERS form using the standard DataEase record entry
procedures. Each time you choose Edit>>Form Clear, DataEase displays a new blank record,
just as in normal record entry.
When you finish entering records and close the MEMBERS form, DataEase executes each
command in the Control procedure until the end of the RESERVATION INVOICES procedure
is reached.
When the Control procedure is completed, DataEase automatically returns to the form or menu
from which the procedure was originally called.
The sample scripts included in this chapter are designed to illustrate many of the advanced
capabilities of the DataEase Query Language. There may be more efficient and effective ways
of achieving the same ends through the use of a well-placed derivation formula or in a Client-
server environment. Some alternate solutions are presented in the next chapter.

© DataEase International Ltd

91

Chapter 5 : Transaction Processing
Using DQL in a Client-Server Environment
See DQL 8 for more information on the DataEase SQL Commands.
See DG A for information on designing and running DataEase applications with a foreign
database engine.

Using DataEase in a Client-server environment can significantly speed up performance by
dividing data access and processing tasks between a high performance back-end database
engine and a user-friendly, graphical, front-end client application. The enhanced performance
provided by Client-server architecture is particularly useful for transaction processing, a special
type of application in which large numbers of records are frequently updated, such as travel
reservations, inventory control, or financial transactions.

In high-volume transaction processing applications, data integrity is as important as speed. By
default, DataEase treats any DQL Procedure that adds, modifies, or deletes data as a
transaction. A transaction is a set of actions that must be processed as a single unit of work to
maintain data integrity. For example, a procedure that withdraws money from a customer's
savings account and deposits the withdrawn amount into the customer's checking account
must be treated as a single transaction to maintain the correct balance in both of the
customer's accounts.

Debiting the savings account and crediting the checking account must be treated as a single
unit of work to maintain data integrity.

© DataEase International Ltd

92

An application cannot process just one part of a transaction. When a computer goes down in
the middle of a transaction, the application contains safeguards to rollback the data to the state
it was in before the transaction began.

Using SQL Commands in a DQL Procedure
Whether or not you run DataEase in a Client-server environment, the special set of
transaction-oriented commands (shown on the previous page) are automatically included in
the DQL Script Editor in the Commands pick list. The example in this chapter explains how
these commands are used to enhance the Club ParaDEASE reservations system described in
the preceding chapter.

Note: If you haven't already done so, we recommend that you read at least the first section of
Chapter 4 which describes the INPUT RESERVATIONS procedure, before you continue.

© DataEase International Ltd

93

Using Explicit Transactions to Enhance a DQL Procedure
In Chapter 4 we created the INPUT RESERVATIONS procedure to automate the process of
checking room availability and entering reservations. The original script from Chapter 4 is
shown below.
if data-entry ROOMS_REQUIRED > any CLUB ROOMS with

 (RESERVATION DATE = data-entry RESERVATION_DATE and CLUB ID =

 data-entry CLUB_ID) VACANCIES then

 message " Not enough rooms are available. |

 Please choose another Club or date. " window .

 else

 while current status not = 1 do

 input using MEMBERS in "TEMPMEM" .

 case (current status)

 value 1 :

 exit

 value 2 :

 modify records in CLUB ROOMS with

 (CLUB ID = data-entry CLUB_ID and

 RESERVATION DATE = data-entry RESERVATION_DATE)

 VACANCIES := VACANCIES - data-entry ROOMS_REQUIRED .

 enter a record in RESERVATIONS

 copy all from TEMPMEM ;

 CLUB ID := data-entry CLUB_ID ;

 DATE:= data-entry RESERVATION_DATE ;

 ROOMS REQUIRED:= data-entry ROOMS_REQUIRED .

 record entry RESERVATIONS .

 others :

 message " You are not authorized to |

 modify or delete a record! " window .

 end -- case

 end -- while

 end -- if

Although the INPUT RESERVATIONS procedure can check to see if the required number of
rooms are available before any RESERVATIONS data is entered, the procedure does not
include the data integrity safeguards that online transaction processing normally requires. For
example, if the RESERVATIONS form is locked when this procedure attempts to enter a
reservation record, the procedure cannot automatically replace the number of rooms that were
subtracted from the total rooms available at the destination club.

© DataEase International Ltd

94

Modified INPUT RESERVATIONS Script
However, if you are running DataEase in a Client-server environment, the procedure can be
rewritten to: (1) identify and control individual transactions, and (2) use the SQL database
engine's transaction log to rollback an incomplete transaction. The Client-server version of the
INPUT RESERVATIONS script might be written as shown below. The parts of the script that
remain the same are shown in greyed text.
tran off

 if data-entry ROOMS_REQUIRED > any CLUB ROOMS

 with (RESERVATION DATE = data-entry RESERVATION_DATE

 and CLUB ID = data-entry CLUB_ID) VACANCIES then

 message " Not enough rooms are available. |

 Please choose another Club or date. " window .

 else while current status not = 1 do

 input using MEMBERS in "TEMPMEM" .

 case (current status)

 value 1 :

 exit

 value 2 :

 begin transaction

 modify records in CLUB ROOMS with

 (CLUB ID = data-entry CLUB_ID and

 RESERVATION DATE =

 data-entry RESERVATION_DATE)

 VACANCIES := VACANCIES - data-entry ROOMS_REQUIRED .

 enter a record in RESERVATIONS

 copy all from TEMPMEM ;

 CLUB ID := data-entry CLUB_ID ;

 DATE := data-entry RESERVATION_DATE ;

 ROOMS REQUIRED := data-entry ROOMS_REQUIRED .

 if current SQLCODE = 0 then

 commit

 record entry RESERVATIONS .

 else

 rollback

 message " This transaction has failed. |

 No data has been changed or entered. " window .

 end -- if

 others :

 message " You are not authorized to |

 modify or delete a record! " window .

 end -- case

 end -- while

© DataEase International Ltd

95

 end -- if

 tran on

Explanation of the Modified Script
Sew DQL 8 for more information on the tran on and tran off commands.

In this section, we will look at each of the modifications and examine the effect they have on
how DataEase processes the script.
The first new command is tran off. When a DQL Procedure is translated into SQL, DataEase
inserts an implicit begin transaction command at the beginning of the script. By default,
DataEase treats any procedure that includes a Processing command (e.g., enter a record, list
records) as a transaction (i.e., a single unit of work).
The tran off command turns off the DataEase default transaction management and data
locking facilities and switches DQL processing into tran off mode. In tran off mode, DataEase
processes each record as a separate transaction. No DQL actions are grouped together as a
transaction and no multi-user data locking rules are enforced. These restrictions let you control
the beginning and end of individual transactions by placing your own begin transaction,
commit, and rollback commands. In our example, we have inserted a tran off command so we
can control exactly which actions constitute a transaction.
The next section of the script (shown below) remains the same. It checks room availability then
opens the MEMBERS form using the input using command.

if data-entry ROOMS_REQUIRED > any CLUB ROOMS

 with (RESERVATION DATE = data-entry RESERVATION_DATE

 and CLUB ID = data-entry CLUB_ID) VACANCIES then

 message " Not enough rooms are available. |

 Please choose another Club or date. " window .

 else

 while current status not = 1 do

 input using MEMBERS in " TEMPMEM " .

 case (current status)

 value 1 :

 exit

 value 2 :

The begin transaction command which we inserted immediately after the value 2 statement
marks the start of a transaction. When processing reaches a begin transaction command,
DataEase treats all the following statements in the script as part of the same transaction until a
commit, rollback, or another begin transaction command is reached.

See DQL 8 for information on the begin transaction, commit, and rollback commands.

© DataEase International Ltd

96

In our example, when the reservation clerk finishes filling in the information in the MEMBERS
form and saves the record, DataEase sends a begin transaction command to the server. The
begin transaction command combines the following two actions into a single transaction:
• Modify the matching record (the record with the same CLUB ID and DEPARTURE DATE) in

CLUB ROOMS to decrement the number of available rooms.
• Enter a new RESERVATIONS record.

If one of these actions isn't completed successfully, DataEase tells the server to undo the
other.
If you run the original procedure in a Client-server environment, the entire script is treated as a
single transaction. For example, if you begin to enter a fifth reservation and the
RESERVATIONS form is unavailable, all four of the previous reservations are rolled back.
The next three sections of the script (below) remain the same. They modify a record in CLUB
ROOMS and enter a new record in RESERVATIONS.

modify records in CLUB ROOMS with

 (CLUB ID = data-entry CLUB_ID and

 RESERVATIONDATE = data-entry RESERVATION_DATE)

 VACANCIES := VACANCIES - data-entry ROOMS_REQUIRED .

 enter a record in RESERVATIONS

 copy all from TEMPMEM ;

 CLUB ID:= data-entry CLUB_ID;

 DATE:= data-entry RESERVATION_DATE ;

 ROOMS REQUIRED:= data-entry ROOMS_REQUIRED .

See DQL 8 for more information on current SQLCODE.

At the end of the previous series of actions, we've added the following statements:

if current SQLCODE = 0 then

 commit

 record entry RESERVATIONS .

 else

 rollback

 message " This transaction has failed. |

 No data has been changed or entered. " window .

 end

© DataEase International Ltd

97

This section of the script uses an if Command to test the value stored in the current SQLCODE
system-defined variable.
The current SQLCODE variable traps the error code the server generates when an error
occurs during the processing of an SQL statement (DataEase sends an SQL INSERT
command to the server when you use the enter a record command in a script). If the last SQL
statement processes without error, current SQLCODE is set to zero.
The if command checks the value in the current SQLCODE variable for a value of zero. If the
value is zero, DataEase commits all the previous actions that have occurred since the begin
transaction command was issued. In our example, the following actions are committed (written
to the database):
• Decrement the number in the VACANCIES field in CLUB ROOMS by the number entered in

the ROOMS_REQUIRED field in the Data-entry form.
• Enter a new record in the RESERVATIONS form.

See the documentation that comes with your SQL database software to determine if your
environment supports stored procedures.

If the two actions described on the previous page are successfully committed, DataEase opens
the RESERVATIONS form so the reservation clerk can complete the data entry. When the
reservation clerk closes the RESERVATIONS form, control reverts to the script.

if current SQLCODE = 0 then

 commit

 record entry RESERVATIONS .

 else

 rollback

 message " This transaction has failed. |

 No data has been changed or entered. " window .

 end

If the value in the current SQLCODE variable is anything other than zero, an error has
occurred. When an error occurs, the actions that follow the else command are executed:
DataEase first rolls back the two data modifications, then displays the specified message text.
The end command terminates the if statement.
The last new command is the tran on command. The tran on command is used to restore the
DataEase default transaction management and data locking facilities we disabled at the
beginning of the script with the tran off command.

Note: The tran on command at the end of this script is required only if additional statements
follow. However, we recommend that you include this command to maintain correct syntax
throughout the script.

© DataEase International Ltd

98

SQL User Permissions
See DG 8, A for information on how DataEase security affects running DQL Scripts in a Client-
server environment.
To execute a DQL Procedure that accesses foreign data, you must have a valid User Name in
all the SQL databases in which referenced tables are stored and the required User
Permissions in all the accessed tables. DataEase automatically translates its own User
Security Levels stored in the Users form into the appropriate SQL User Permissions.
The table below shows the SQL User Permissions required to execute various DQL
commands.

SQL User Permissions for DQL Procedures
DQL Command Required SQL User Permission Comments

list records SELECT N/A
enter a record INSERT N/A
modify records UPDATE N/A
delete records DELETE N/A
input using record entry Depends on which processing key

is pressed (F2 = INSERT, F3 =
SELECT, F7 = DELETE, F8 =
UPDATE)

N/A

install application Depends on what operations the
installation file performs (CREATE
TABLE, INSERT, DELETE,
UPDATE)

The install application command
copies all the documents and
data from another application into
the current application (equivalent
to choosing
Application>>Utilities>>Install
Application).

reorganize N/A You can only use the reorganize
command on native DataEase
tables, not on forms that access
SQL tables.

application status N/A The application status command
generates a report that displays
the status of the application
(equivalent to choosing
Application>>Utilities>>Status).

lock
unlock
query selection

N/A Many SQL engines do not
support the lock, unlock, and
query selection commands. See
your Database Engine
Information Guide for information
on whether these DQL
commands are supported.

lock db
unlock db

N/A The lock db command prevents
DataEase users from accessing
any form, table, report, or
procedure in an application, but
has no effect on users who are
using another application (e.g.,
Excel) to access the SQL tables
that are part of the current
application.

© DataEase International Ltd

99

Chapter 6 : DQL Tech Tips
Using DQL with the DataEase Native Engine
The following pages describe how you can use the DataEase Query Language
to carry out some of the most commonly encountered database tasks.

How to Organize the Commands in a Simple Script100

How to Choose the Primary Table in a Multi-Table Procedure103

How to Combine Multiple Selection Criteria using and and or104

How to Add Group Totals and Grand Totals to a Report105

How to List Individual Field Values from a Related Table107

How to Use Indexes to Improve DQL Processing Speed109

How to Post Totals to Another Table ..113

How to Calculate a Percentage ..114

How to Count the Number of Groups in a Report116

How to Count the Number of Records in a Group118

How to Produce Multiple Printouts of Each Record in a Report120

How to Create an Accounts Receivable Aging Report122

How to Sort the Values in a Choice List Field ..125

How to List the First Several Records in a Table126

How to Find and List Duplicate Records ..127

© DataEase International Ltd

100

How to Organize the Commands in a Simple Script
See DQL 8 for information on the for, list records, and end commands.

Question
How should I order the commands in a script when I'm using sorting, grouping, and statistical
operators?
Solution

1. Begin with a for command to specify the Primary table for the report.
2. Use the list records command to list the fields you want to include.
3. List the grouped field(s) in groups with group-totals first under the list records command.
4. List the ordered field(s) in order (or in reverse) after the grouped field(s).
5. List the field(s) on which you wish to generate statistics using the conditional statistical

operators or the relational statistical operators.

Example 1

for MEMBERS ;

list records

STATE in order ;

LAST NAME in order ;

FIRST NAME in order .

end

This script tells DataEase to: (1) sort the STATE field in order first, (2) then, within each state
group, sort the LAST NAME field in order, and finally, (3) for each duplicate LAST NAME, sort
the FIRST NAME in order.

Sample Output 1
The output for the above example can be formatted to look like this:

State Name
AL Gould, Matthew
AL Jones, Anita
AL Jones, Thomas
AR Notarnicola, Rosanne

Example 2
for MEMBERS ;

list records

LAST NAME in order ;

FIRST NAME in order ;

STATE in order .

end

© DataEase International Ltd

101

In Example 2, since the LAST NAME field is listed first and the STATE field last, DataEase
performs the sorts in a different sequence, creating a very different result.

SampleOutput 2
The output for Example 2 can be formatted to look like this:

 Name State
Adams, John CT
Adams,Will OK
Albert, Roland OH
Anders, Jenna MT

Example 3
for MEMBERS ;

list records

STATE in groups ;

LAST NAME in order ;

FIRST NAME in order .

end

Example 3 is identical to Example 1 except that the STATE field is now listed in groups rather
than in order. The in groups command orders the values just like the in order command but
each value is listed just once instead of repeatedly. Notice the difference in the appearance of
the output shown on the next page.

SampleOutput 3
The output from Example 3 can be formatted to look like this:
State Name

AL
Gould, Matthew
Jones, Anita
Jones, Thomas

AR
Notarnicola, Rosanne
Rubin, Benjamin
Shoen, Cecilia
Turner, Anne
Turner, Patrick

© DataEase International Ltd

102

Example 4
for CLUBS ;

list records

COUNTRY in groups with group-totals ;

CLUB NAME in order ;

mean of RESERVATIONS TOTAL DUE ;

ROOMS : item sum .

end

This example tells DataEase to: (1) open the CLUBS table and process all the records, (2)
group the records by country, (3) within each country group, sort the club names in ascending
order (a-z), (4) calculate the average reservation total for each club, and (5) list the number of
rooms at each club, the number of rooms in each country, and the total number of club rooms
in Club ParaDEASE.

Discussion
DataEase processes the commands in a script in the order it encounters them. Therefore, as a
general rule you must:
• Place any grouping commands before any ordering commands.
• Place any statistical operators after any grouping and/or ordering commands.

Tip
When you use multiple or nested for loops, you must terminate each for loop with an end
command. Although DataEase doesn't require an end command in a simple script like the one
shown on the previous page, we recommend that you get in the habit of using an end
command to signal the end of each for loop.

© DataEase International Ltd

103

How to Choose the Primary Table in a Multi-Table Procedure
Question
How do I choose the Primary table in a procedure that accesses more than one table?
Solution
You should typically choose the table that contains the fewest number of records as the
Primary table for a report.
Example

for MEMBERS ;

list records

MEMBER ID in groups ;

all FAMILY MEMBERS LAST NAME ;

all FAMILY MEMBERS FIRST NAME ;

TOTAL DUE .

end

This example tells DataEase to: (1) process each record in the MEMBERS table listing each
MEMBER ID just once and then, (2) the FIRST NAME and LAST NAME of each FAMILY
MEMBER included in the membership, and (3) list the total amount of dues paid for the
membership.

Discussion
This script could also have used the FAMILY MEMBERS table as the Primary table listing any
MEMBERS MEMBER ID and any MEMBERS TOTAL DUE to select data from the MEMBERS
table. However, as a general rule, it is better to start on the one side of a one-to-many
relationship since there are fewer records to process in the Primary table. Since Match fields in
a relationship should always be indexed, the time it takes DataEase to retrieve records from a
related table is minimized.

© DataEase International Ltd

104

How to Combine Multiple Selection Criteria using and and or
Question
When should I choose and to combine multiple selection criterion and when should I use or?

Solution
1. Use and when you want to select records that meet each of a set of criteria.
2. Use or when you want to select records that meet one or more of a set of criteria.
3. When you want to combine criteria using both and and or, use parentheses to clarify the

meaning to DataEase. The examples below illustrate each of the possible combinations.

Example 1
for FAMILY MEMBERS with

AGE STATUS = "adult" and STATE = "CO" ;

Example 1 tells DataEase to select only those records that store both the values adult in the
AGE STATUS field and CO in the STATE field.

Example 2
for FAMILY MEMBERS

with AGE STATUS = "adult" or STATE = "CO" ;

In Example 2, only one of the specified conditions must be met for the record to qualify. When
we use the or operator instead of the and operator, children living the state of Colorado qualify
as do adults living in any other state.

Example 3
for FAMILY MEMBERS

with AGE STATUS = "adult" and (STATE = "CO" or STATE ="WY") ;

The parentheses in Example 3 clarify any ambiguity for DataEase. This example tells
DataEase to find all the adults living in either Colorado or Wyoming.
Caution
You might think that to list members from both Colorado and Wyoming, you could use the with
clause, with STATE = "CO" and STATE = "WY". However, the and operator stipulates that all
specified values must be found in a record for the record to be processed. Since an address
cannot be in both Colorado and Wyoming, DataEase doesn't find any records to process.
When you want to select records that store any one of several different values in the same
field, you must use the "or" operator.
When you combine an and operator with an or operator in the same with clause, parentheses
must be used to assure that no ambiguity exists. For example, without the parentheses,
Example 3 would read with STATE = "CO" or STATE = "WY" and AGE STATUS = "adult".
Given this statement, DataEase can't determine whether you want to list: (1) only adults living
in Colorado or Wyoming, or (2) all Colorado residents (regardless of age status) and any adult
residents of Wyoming. DataEase is unable to resolve the ambiguity and will not therefore
parse the script.

© DataEase International Ltd

105

How to Add Group Totals and Grand Totals to a Report
Question
How do I get DataEase to generate both group subtotals and a grand total for the entire
report?

Solution
1. Use the in groups command to list the grouped fields.
2. Use the statistical operators to generate the desired statistics on the appropriate field(s). You

can use any combination of the statistical operators.
3. If you also want to list the individual field values, include the item operator with any other

statistical operators.

Example
for RESERVATIONS ;

list records

MEMBER ID in groups with group-totals ;

any MEMBERS LAST NAME ;

CLUB NAME ;

TOTAL DUE : item sum mean .

end

Sample Output
The output for this example can be formatted to look like this:

Member ID Name Club Name Total Due
00001 Birnbaum

Playa Blanca 2,502.00
Cancun 2,700.00
Magic Isle 3,120.00

=======
sum 8,322.00
mean 2,774.00

00002 Perrault
Caravelle 5,560.00
Paradise
Island

2,900.00

=======
sum 8,460.00
mean 4,230.00

© DataEase International Ltd

106

sum 16,780.00
mean 3,356.40

Tip
When you choose any of the automatically generated layout options, DataEase places each
statistical field on the appropriate parent object. If you choose a custom layout, the item field
should be placed on the Subform's Record object, while any aggregate fields should be placed
both on the Subform's Form object (where it will display subtotals) as well as the primary Form
object (where it will display a grand total for the report).

© DataEase International Ltd

107

How to List Individual Field Values from a Related Table
Question
How can I list individual field values from a related table?
Solution

1. Use a for command to open the Primary table.
2. Use a list records command to list any fields from the Primary table to be grouped or ordered

first.
3. Based on the Primary table you choose, use the relational operators any or all to list

individual field values from a related table. The relational operator you choose depends on
the direction in which you are navigating the relationship. Use:

any in a many-to-one (or one-to-one) direction when there is only one related record for
DataEase to find.
all in a one-to-many direction when the related file stores multiple related records for each
primary record.

Example 1
for MEMBERS ;

 list records

 MEMBER ID in groups ;

 LAST NAME ;

 all FAMILY MEMBERS FIRST NAME ;

 all FAMILY MEMBERS AGE STATUS ;

 TOTAL DUE . end

Example 1 tells DataEase to: (1) process all the MEMBERS records listing, (2) the MEMBER
ID and LAST NAME of each member, (3) the FIRST NAME, LAST NAME, and AGE STATUS
from each related record in FAMILY MEMBERS, and (4) the total membership fees.

Example 2
for FAMILY MEMBERS ;

 list records

 any MEMBERS MEMBER ID in groups ;

 any MEMBERS LAST NAME ;

 FIRST NAME ;

 AGE STATUS ;

 any MEMBERS TOTAL DUE .

 end

Example 2 can be formatted to present the identical output as Example 1 The only
difference is that this script uses the many side of the relationship as the Primary table for the
report.

© DataEase International Ltd

108

Sample Output
Both examples can be formatted to produce output that looks like this:

Member ID LastNam
e

 Family Members AgeStatus MembershipTota
l

00033 McKeag
Michael adult
Susan adult

70.00
00034 Rada

Amanda adult
Jerome child
Clarence adult

85.00
00035 Carlson

Elizabeth adult 35.00

Tip
While Example 2 is perfectly viable, you should notice a significant speed improvement
running Example 1. Because Example 1 starts on the one side of the relationship, there are
fewer records for DataEase to process.

© DataEase International Ltd

109

How to Use Indexes to Improve DQL Processing Speed
Question
Will indexing the fields that I typically sort and use in selection criteria improve the processing
speed of my scripts?
Solution
There is no simple yes or no answer to this question; however, understanding how DataEase
processes a procedure can help you optimize your scripts. This Tech Tip tells you when and
how DataEase uses a field's associated index file so you can make an informed decision as to
when an index will speed up (or perhaps slow down) the processing time required to run each
of your DQL Procedures.

DataEase uses a three phase process to execute a procedure that contains a Processing
command (e.g., list records, modify records):

1. Record Selection phase − used only if there are selection criteria that includes an indexed
field.

2. Qualification phase − used when there are selection criteria and one or more fields are not
indexed.

3. Processing phase − used to process the data.

In a Processing procedure (one that includes a Processing command), the Processing phase
is always used. Record selection and/or qualification are only used if the script includes a with
statement. The availability and size of the indices in the selection criteria determine when and
how DataEase processes a simple script.
Lets begin by taking a sample script and looking at how DataEase uses any available indexes.

Example
for FAMILY MEMBERS

 with STATE = "CA" and AGE STATUS = "ADULT" ;

 list records

 FIRST NAME ;

 LAST NAME in order .

 end

Example 1
Depending on which fields are indexed and their placement in the script, DataEase may or
may not use an associated index file. Using just the selection criteria from the above example,
lets take a look at each possibility:

with STATE = "CA" and AGE STATUS = "ADULT" ;

If both the STATE and AGE STATUS fields are indexed, DataEase normally uses both indices
to generate an array of record numbers that meet each criterion. The arrays are then
compared (in memory) for matching record numbers. Since this example uses an and

© DataEase International Ltd

110

operator, the intersection of the list is then processed by the list records portion of the script, as
illustrated below:

STATE = "CA" AGE STATUS = "adult" 115392121157 Record
Numbers for Processing 113688121157 11121157

Example 2
In the second scenario, we use the identical with clause except that the and operator is
replaced with the or operator:

with STATE = "CA" or AGE STATUS = "ADULT" ;

Once again, if both fields are indexed, DataEase uses both indices to generate two arrays of
record numbers that meet each criterion. However, since we're using or instead of and, the
union of the two lists is processed as shown on the next page.

STATE = "CA" AGE STATUS = "adult" 115392121157 Record
Numbers for Processing 113688121157 1136538892121157

Example 3
In the third scenario, using the and operator again, suppose the STATE field is indexed, but
the AGE STATUS field is not:

with STATE = "CA" and AGE STATUS = "ADULT" ;

As before, DataEase uses the available index to generate an array of record numbers that
meet the STATE = "CA" criterion. However, since the AGE STATUS field is not indexed,
DataEase must qualify each of the records in the first array against the second criterion, as
illustrated below:

STATE = "CA" and AGE STATUS = "adult"

115392121157

Each of the records selected in the array is qualified against the second criterion. Records that
meet the second criterion are processed, but those that don't are discarded.

© DataEase International Ltd

111

Example 4
In the last scenario, suppose again that we are using the or operator and that the STATE field
is indexed, the AGE STATUS field is not:

with STATE = "CA" or AGE STATUS = "ADULT" ;

In this scenario, DataEase does not use the index on the STATE field. Since every record in
the FAMILY MEMBERS table must be qualified for the second criterion, there is no benefit in
building an array of the matching STATE records. It is much faster for DataEase to qualify
each record for both criteria simultaneously. Those records that qualify are passed on to the
Processing phase of the procedure.

Discussion
The order in which you list selection criteria can also have a dramatic impact on performance.
If DataEase is going to use an index in selecting records, it automatically opens the index for
the first field listed after the with command. For example, in the following with statement:

with STATE = "CA" and AGE STATUS = "adult"

if both fields are indexed, DataEase automatically opens the STATE field's index and builds
the array of matching record numbers. If the second criteria's array is determined to be at least
four times greater than the first (e.g., STATE = "CA" selects 1,000 records, while AGE
STATUS = "ADULT" selects 6,000 records), DataEase does not take the time to build the
second array. It is faster to simply qualify the first 1,000 records for the second criterion. If,
however, the order of the fields is reversed (e.g., AGE STATUS = "ADULT" and STATE =
"CA"), DataEase automatically opens and uses the index on the AGE STATUS field, forcing
the comparison of the two arrays in memory and potentially slowing down performance.
Therefore, you should always list the fields in your selection criteria in order from most
discriminating to least discriminating.

Example 5
Now let's look at the original script and consider the use of indexes when you sort the
procedure's output.

for FAMILY MEMBERS

 with STATE = "CA" and AGE STATUS = "ADULT" ;

 list records

 FIRST NAME ;

 LAST NAME in order .

 end

In this example, we list the LAST NAME field in order. If the LAST NAME field is indexed,
DataEase only uses the index if an index was not used in the Selection phase of processing
(i.e., if neither the STATE field nor the AGE STATUS fields are indexed). If DataEase does use
an index in selecting records, the index on the sorted field is not used.

© DataEase International Ltd

112

When using an index for sorting the records, DataEase uses only the index on the primary sort
level. For example, in the script shown above, if the FIRST NAME field was also indexed and
listed in order, DataEase would use the index on FIRST NAME and ignore the index on LAST
NAME.

Tip
Always index the Match (key) fields in a relationship. Both the Primary and foreign keys should
be indexed.

Caution
Indexes are most effective in improving DQL processing speed when they select a relatively
small number of records. Therefore, indexing a choice field with two or three choices, or a
Yes/No field (where either selection is likely to select a large percentage of the records in the
file) can be a particularly ineffective use of an index.

© DataEase International Ltd

113

How to Post Totals to Another Table
Question
I can get DataEase to generate report subtotals but I do not know how to transfer those totals
to a separate summary table.
Solution

1. Define a temporary variable of the same type as the field you are listing in groups.
2. Use a for command to specify the Primary table for the report.
3. Include a list records command. You only need to list the field that you are grouping. List the

field in groups and terminate the list records command with a period.
4. Use an if command to check the status of the temporary variable.
5. Use the enter a record in command to enter a new record in the summary table each time

the group changes.
6. Reassign the temporary variable for the next pass of the for loop.

Example
define temp "LASTGRP" Numeric String 5 .

 for RESERVATIONS ;

 list records

 MEMBER ID in groups .

 if MEMBER ID not = temp LASTGRP then

 enter a record in RESERVATION SUMMARY

 MEMBER_ID := RESERVATIONS MEMBER ID ;

 TOTAL_SPENT := sum of RESERVATIONS with

 (MEMBER ID = RESERVATION SUMMARY MEMBER_ID)

 TOTAL DUE .

 assign temp LASTGRP:= MEMBER_ID .

 end -- if

 end -- for

This example tells DataEase to: (1) define a temporary variable called last grp as a 5 digit
numeric string, (2) open the reservations table and process every record, and (3) list the
MEMBER ID in groups. The next part of the script tells DataEase to: (4) using an if command,
compare the value in the MEMBER ID field (in the record being processed) with the value in
the LAST GRP variable. If the two values are different, DataEase enters a new record in the
summary table (RESERVATION SUMMARY). The information entered in the new record
includes the MEMBER ID and the sum of the total cost of all the reservations for that member.
The last part of the script tells DataEase to: (5) assign the temp LAST GRP variable the
current MEMBER ID. The first end command terminates the if command and the second end
terminates the for loop.

© DataEase International Ltd

114

How to Calculate a Percentage
Question
How can I calculate a percentage in a report?
Solution
It depends on the type of percentage you want to generate. You can:
• Use the conditional statistical operators to calculate what percent of the records in a group or

the entire table contain a particular field value, as illustrated in Example 1 below.
• Use the relational statistical operators to generate a total that you can divide a field value or

another sum by, as illustrated in Example 2 below.

Note: When you use relational statistical operators, your solution will benefit from the addition
of one or more temporary variables to store the calculated value, as shown in Examples 2 and
3.
Example 1

for FAMILY MEMBERS ;

list records

MEMBER ID in groups ;

AGE STATUS = "child" : percent .

end

This example tells DataEase to: (1) process all the records in the FAMILY MEMBERS table,
(2) group the records by the MEMBER ID field, and (3) generate a percentage of how many of
the members in each group are children.

Example 2
define temp "RM" number .
 assign temp RM := sum of CLUBS ROOMS .
 for CLUBS ;

 list records

 CLUB ID in groups ;

 (ROOMS / temp RM) * 100

. end

. end

Example 2 tells DataEase to: (1) process all the records in the CLUBS table, (2) group the
records by MEMBER ID, and (3) divide the total number of rooms at each club by the total
number of rooms at all the Club ParaDEASE clubs, then multiply the result by 100 to generate
a percentage.

Note: In Example 2, we used a temporary variable to accumulate the total number of rooms
for all clubs prior to opening the CLUBS table. We might have instead replaced the last line of
the script with "rooms/sum of CLUBS ROOMS * 100". However, this syntax requires DataEase
to generate the same total over and over again once for each record processed by the for loop.

© DataEase International Ltd

115

Example 3
 define temp "CLUB" numeric string 5 .

 define temp "CLUBTOT" number .

 define temp "KIDTOT" number .

 for RESERVATIONS ;

 if temp CLUB not = CLUB ID then

 assign temp CLUB := CLUB ID .

 assign temp CLUBTOT := TOTAL DUE .

 assign temp KIDTOT := TOTAL CHILD PRICE .

 else

 assign temp CLUBTOT := temp CLUBTOT + TOTAL DUE .

 assign temp KIDTOT := temp KIDTOT + TOTAL CHILD PRICE .

 end

 list records

 CLUB ID in groups ;

 (temp KIDTOT / temp CLUBTOT) * 100 .

 end

Example 3 tells us what percentage the total child's price is of the total of all reservations at
each club. This script tells DataEase to: (1) define three temporary variables. temp CLUB will
store the CLUB ID of the current record being processed. temp CLUBTOT will accumulate the
total dollar amount of all the reservations for each club. temp KIDTOT will accumulate the total
dollar amount of all the children's reservations at each club. The next part of the script tells
DataEase to: (2) open the reservations table and process all the records, then (3) use an"if"
command to check the value in temp CLUB. If this value is different to the CLUB ID value in
the current record, assign CLUB the current CLUB ID. Simultaneously, assign the CLUBTOT
variable the value in the TOTAL DUE field and the KIDTOT variable the value in the TOTAL
CHILD PRICE field. If temp CLUB and the CLUB ID are the same, increment temp CLUBTOT
and temp KIDTOT, (4) group and list the CLUB ID, and (5) divide temp KIDTOT by temp
CLUBTOT and multiply the result by 100 to list what percentage the children's reservation total
is of the whole total for each club.

© DataEase International Ltd

116

How to Count the Number of Groups in a Report
Question
How can I count the number of groups in my reports?
Solution

1. Define a temporary variable to store the value in the grouped field. Use this variable to
indicate when the group has changed.

2. Define a second temporary variable to accumulate the number of groups. Increment this
variable each time the value in the first variable changes.

3. Use a for command to open the Primary table for the report.
4. Use an if Command to check the value in the first variable. If the grouped field value and the

variable are different, update the variable to reflect the new group and simultaneously
increment the second variable.

5. Use an end command to terminate the if Command.
6. Include a list records command to list the fields to be printed. The list should include the

second temporary variable that accumulates the number of groups.

Example
 define temp "ST" text 2 .

 define temp "KOUNT" number .

 for MEMBERS ;

 if temp ST not = STATE then

 assign temp ST := STATE .

 assign temp KOUNT := temp KOUNT + 1 .

 end -- if

 list records

 MEMBER ID ;

 LAST NAME ;

 STATE in groups ;

 temp KOUNT .

 end -- for

This example tells DataEase to: (1) define two temporary variables. The first should be the
same field type as the field you are grouping. The second variable should be defined as a
number since it will accumulate a numeric value. The next part of the script tells DataEase to:
(2) open the MEMBERS table and check the value in the ST temporary variable. If the value in
the ST variable is different than the value in STATE field in each record processed, assign the
ST variable to the current STATE field value. At the same time, increment the KOUNT variable
by one, (3) sort the records in ascending order by state, and (4) list the STATE field in groups,
the MEMBER ID, LAST NAME, and temp KOUNT variable.

Tip
When you create the layout for this type of procedure, place the temp KOUNT variable on the
primary Form object.

© DataEase International Ltd

117

Caution
When you name a temp or global variable in a script, be sure to avoid using keywords and
existing field names (e.g., use KOUNT or COUNTER rather than COUNT, as shown on the
previous page).

© DataEase International Ltd

118

How to Count the Number of Records in a Group
Question
How can I count the number of records in each group?
Solution
There are two alternative solutions:

1. You can use conditional statistical operators as shown in Example 1.
2. If you want to further manipulate that number (e.g., use it to calculate a percentage) or enter

it in a summary file, you can use a temporary variable to accumulate the value.

Example 1
for MEMBERS ;

 list records

 STATE in groups ;

 LAST NAME in order ;

 "A" = "A" : count .

 end -- for

This example tells DataEase to: (1) open the MEMBERS table and process all the records, (2)
sort the records in ascending order by state, (3) further sort the records for each state in order
by last name, and (4) count every record in the file.
The line in Example 1, "A" = "A" : count, is used to count every record processed by the query.
This line uses a conditional statistical operator to count all the records unconditionally. For
each record in the table, the comparison "A" = "A" is always true, therefore, every record
processed is counted. You can also use a field value (e.g., LAST NAME = LAST NAME :
count; (for every record processed the last name is always equal to itself) to count the records,
but the constant text value "A" is a more commonly used method for counting records.

Example 2
define temp "ST" text 2 .

define temp "KOUNT" number .

for MEMBERS ;

 if temp ST not = STATE then

 assign temp ST := STATE .

 assign temp KOUNT : = 1 .

 else

 assign temp KOUNT := temp KOUNT + 1 .

 end -- if

 list records

 STATE in groups ;

 LAST NAME in order ;

 temp KOUNT .

 end -- for

© DataEase International Ltd

119

Example 2 tells DataEase to: (1) create two temporary variables. The first holds the state value
from the current record. The second is incremented each time the state changes. The next part
of this script tells DataEase to: (2) open the MEMBERS table and process every record, and
(3) compare the ST variable with the value in the state field. If the two values are different,
update the ST variable to the state value in the current record and reinitialize the KOUNT
variable. If the two values are the same, increment the KOUNT variable by one. The rest of the
script tells DataEase to: (4) group the records by state. Within each state group, sort the
records in ascending order by last name, and (5) list the state, last name and number of
records processed.

Discussion
Both examples can be formatted to produce nearly identical output. Aqs well as being simpler,
Example 1 can be used to provide a grand total (i.e., the number of all the records processed
by the query) as well as a subtotal for each group. Example 2 provides only group subtotals.
To generate a grand total in Example 2 you must add another temporary variable.
Although Example 1 is much simpler and more straightforward, if you want to then post the
totals to a separate file, you must follow Example 2.

Caution
When you name a variable in a script, be sure to avoid using keywords and existing field
names (e.g., use KOUNT or COUNTER rather than COUNT, as shown above).

© DataEase International Ltd

120

How to Produce Multiple Printouts of Each Record in a Report
Question
How can I print several copies of each record in a report? For example, I frequently need to
print three or four mailing labels for each person.
Solution

1. Define a temporary variable to keep track of how many labels have been printed.
2. Use a for command to open the Primary table.
3. Assign the temporary variable a starting value. This should be done within the for loop.
4. Open a while loop within the for loop. This tells DataEase to continually loop through the list

records command as many times as requested for each record processed. Use a list
records command to list the desired fields.

5. Reassign the temporary variable to increment as each interior looping action is completed.

Example
define temp "KOUNT" Number .

 for MEMBERS ;

 assign temp KOUNT := 1 .

 while temp KOUNT <= 3 do

 list records

 FIRST NAME ;

 LAST NAME ;

 STREET ;

 CITY ;

 STATE ;

 ZIP .

 assign temp KOUNT := temp KOUNT + 1 .

 end -- while

 end -- for

This example tells DataEase to: (1) define a temporary variable (temp KOUNT) that will be
used as a counter, and (2) use a for command to open the MEMBERS table. Since there are
no selection criteria, process all the records, and (3) assign the temp KOUNT variable to one.
Since the assign command is within the for loop, temp KOUNT is reassigned for each record
processed. The next part of the script tells DataEase to: (4) use a while looping command to
check the value in temp KOUNT. As long as the count is less than four, continually loop
through the list records command, and (5) each time a record is listed, increment temp KOUNT
by one. When temp KOUNT reaches 4, exit the while loop and repeat the entire process for
each successive record until all the records have been processed.

© DataEase International Ltd

121

Tip
Rather than hard code the number of times you want DataEase to loop through the list
records, the value can be entered in a Data-entry form. The words DATA-ENTRY FIELDNAME
would then replace the number 3 in the above example where fieldname represents the name
of the Data-entry field.
If you reverse the placement of the while and for commands in the above example, DataEase
runs the entire report as many times as requested. This solution has the same effect as
requesting three copies of the report in the Windows Print dialog and checking the Collate
Copies option.

Caution
To improve printing speed, whenever possible, avoid using the Collate Copies option in the
Windows Print dialog. Avoiding this option is particularly important if your report output
includes graphic elements.

© DataEase International Ltd

122

How to Create an Accounts Receivable Aging Report
Question
How can I generate an aging report that shows a breakdown of accounts that are 0-30, 31-60,
and over 60 days past due?
Solution

1. Use a for command to open the Primary table and specify any required selection criteria
using a with clause.

2. Use a list records command to list the fields you want to print.
3. Under the list records command, list the field you want to group (e.g., CUSTOMER NO.,

MEMBER ID, STUDENT ID) in groups.
4. Use an if function to check each record to see which age group it falls into (e.g., 0-30, 31-60,

60+, or whatever age groups you want to establish).
5. Within each if function use the sum statistical operator to generate the total for each group.

Example 1
for INVOICES

 with PAID = NO ;

 list records

 MEMBER ID in groups ;

 LAST NAME ;

 if (current date - INVOICE DATE < 30, AMT_DUE,

 blank) : sum ;

 if (current date - INVOICE DATE between 31 to

 60, AMT_DUE , blank) : sum ;

 if (current date - INVOICE DATE > 60, AMT_DUE ,

 blank) : sum .

 end

This example tells DataEase to: (1) list all open invoice records grouped by MEMBER ID, (2)
check the difference between today's date and the INVOICE DATE to determine the number of
days the invoice is past due, and (3) if the records for each member have amounts less than
30 days past due, calculate the sum of those amounts. If the records for each member contain
totals between 30 and 61 days past due, calculate the sum of those totals. Finally, if the
records for each member contain totals more than 60 days past due, calculate the sum of
those totals.
Sample Output 1
Member ID Last Name Current 30 - 60 Over60
00001 Birnbaum 0.00 0.00 2,502.00
00002 Perrault 2,720.00 2,900.00 0.00
00003 Christino 7,000.00 0.00 0.00
00004 Williams 0.00 0.00 0.00
00005 Riggs 0.00 3,120.00 0.00

sum 9,720.00 6,020.00 2,502.00

© DataEase International Ltd

123

Example 2
define temp "MEMID" numeric string 5 .

define temp "XTHIRTY" number .

define temp "XSIXTY" number .

define temp "XOVER" number .

define temp "ACC_THIRTY" number .

define temp "ACC_SIXTY" number .

define temp "ACC_OVER" number .

for INVOICES with PAID = no ;

if MEMID not = MEMBER ID then

assign temp MEMID := MEMBER ID .

assign temp XTHIRTY := sum of INVOICES named

 "under 30" with (MEMBER ID = INVOICES

MEMBER ID

and PAID = NO and current date - INV_DATE < 30)

AMT_DUE .

assign temp XSIXTY := sum of INVOICES named

 "thirty-60" with (MEMBER ID = INVOICES

MEMBER ID

and PAID = NO and current date - INV_DATE

between 31 to 60) AMT_DUE .

assign temp XOVER := sum of INVOICES named

 "over60" with (MEMBER ID = INVOICESMEMBER ID

and PAID = NO and current date - INV_DATE > 60)

AMT_DUE .

assign temp ACC_THIRTY := temp ACC_THIRTY + temp

XTHIRTY .

assign temp ACC_SIXTY := temp ACC_SIXTY + temp XSIXTY .

assign temp AC_OVER := temp ACC_OVER + temp XOVER .

end

list records

MEMBER ID in groups with group-totals ;

LAST NAME ;

temp XTHIRTY ;

temp XSIXTY ;

temp XOVER ;

temp ACC_THIRTY ;

temp ACC_SIXTY ;

temp ACC_OVER .

© DataEase International Ltd

124

Example 2 uses temporary variables to accumulate the individual totals for each member
(broken down by day range) and report totals for each day range. This example tells DataEase
to: (1) create seven separate temporary variables. The first will be used to track each instance
of the group changing (in this example, it holds the current MEMBER ID). The next three
variables are used to accumulate the day range values: one accumulates totals less than 30
days past due, the next, 31 to 60 days past due and the last, over 60 days past due. The last
three variables accumulate report totals for each of the three day ranges. The next part of the
script tells DataEase to: (2) use a for command to open the INVOICES table, and (3) under the
for loop, assign each temporary variable whenever the current record represents a new group.
This is accomplished by testing the MEMID variable with an if command to see if it contains
the same value as the MEMBER ID in the current record. In the rest of the script, (4) whenever
the MEMID variable is reassigned, the next three variables (XTHIRTY, XSIXTY and XOVER)
are also reassigned. At the same time, the values in the last three variables are incremented to
accumulate report totals for each category, and (5) list the MEMBER ID (in groups) and the
values in each of the variables.

Sample Output 2
Example 2 can be formatted to produce the identical output as Example 1 shown on the
previous page.

Tip
Example 2, though much more complex than Example 1, provides the added benefit of
assigning the totals DataEase generates to temporary variables. This lets you post the totals to
a separate summary file if desired.
When you choose a layout for the procedure, you should choose a tabular format (the default)
and place the temporary variables in the layout.

© DataEase International Ltd

125

How to Sort the Values in a Choice List Field
Question
When I try to list a Choice List field in order, DataEase always lists the values in the order they
were originally entered in the choice list. How can I sort the text value of the choice rather than
the choice number?
Solution
Whenever you sort a Choice List field, DataEase lists the values in order based on the number
associated with the choice since the number is what is actually stored in the field. To list in
alphabetical order, you must make DataEase treat the choice list field as text. To do this, use a
text manipulation function such as jointext, and then sort on this.

Example
for MEMBERS ;

 list records

 jointext (“” , FAVORITE ACTIVITY) in groups ;

 MEMBER ID ;

 LAST NAME .

 End

This example tells DataEase to: (1) process every record in the MEMBERS table, (2) sort the
records by the first word of text value of the choice, and (3) list the FAVORITE ACTIVITY,
MEMBER ID, and LAST NAME of each member.

Tip
The easiest solution to this problem is to enter the choices in alphabetic or numeric order when
you first create the table. Then maintain the order whenever the list is updated.

Caution
You must exercise extreme care when rearranging the choices in a pre-existing choice list.
Failure to update a choice list correctly can result in lost or corrupted data.

© DataEase International Ltd

126

How to List the First Several Records in a Table
Question
How can I list just the first ten records in a table?
Solution

1. Use a for command to open the Primary table for the report.
2. Use a list records command to list the fields you want to include in the report output.
3. Use an if command within the list records portion of the script to check the current item

number.
4. Use the exit or break command to terminate processing when the current item number

exceeds the number of records you want to process.

Example
for ACTIVITIES ;

list records

ACTIVITY ;

PICTURE .

if current item number > 10

exit

end -- if

end -- for

Tip
In the above example, we used the exit command to terminate DQL processing. If the script
included additional processing commands (e.g., a second complete for loop), we would have
used the break command instead of exit.

Caution
You may be tempted to test for the current item number in a with clause in script (e.g., with
current item number <= 10). However, this solution doesn't work since the current item
number variable doesn't begin accumulating its value until the processing phase of the
procedure begins (e.g., the list records command in the above example).

© DataEase International Ltd

127

How to Find and List Duplicate Records
Question
How can I find duplicate records in a table?
Solution

1. Define a temporary variable to store the key value for any duplicate record.
2. Use a for command to open the Primary table.
3. Use an if command to compare the key field to the temporary variable.
4. Use a list records command to list only those records whose key field matches the value

stored in the temporary variable.
5. Use an end command to end the if command and then assign the temporary variable to the

next key field value. Remember to use an end command to end the for loop.

Example 1
define temp " MEM " numeric string 5 .

 for MEMBERS ;

 if MEMBER ID = temp MEM then

 list records

 MEMBER ID in order ;

 last name .

 end -- if

 assign temp MEM := MEMBER ID .

 end -- for

This script tells DataEase to: (1) define a temporary variable to store the MEMBER ID for each
record in the table, (2) sort the records in ascending order by MEMBER ID, and (3) process
every record in the members table, comparing the MEMBER ID in the current record to the one
stored in the temporary variable. If any records contain the matching MEMBER ID, (4) list the
MEMBER ID and LAST NAME of the member, and (5) assign the temporary variable to the
current MEMBER ID and repeat the process.

Example 2
for MEMBERS

with count of MEMBERS with (MEMBER ID = MEMBERS MEMBER ID) >
1 ;

list records

MEMBER ID in order ;

LAST NAME . end

Example 2 tells DataEase to: (1) open the MEMBERS table, (2) for each record, count the
number of records with the matching MEMBER ID number, and (3) list the MEMBER ID and
LAST NAME of each record whose MEMBER ID matches the MEMBER ID stored in another
record.

© DataEase International Ltd

128

Discussion
Example 1 lists only the duplicates while Example 2 lists all the records that share the same
MEMBER ID. Because Example 2 must count the records in the table repeatedly (once for
each record in the table), this process can be quite slow, particularly on a very large table. For
this reason, we recommend that you use Example 1 whenever possible. However, if you want
to see the original record in addition to the duplicates, you must follow Example 2.

Tip
To avoid entering duplicate records, be sure to include a Primary key (a unique identifier for
each row in the table) in each table. Your Primary key should always be defined as Unique,
Indexed, and Required.

Caution
The key field in Example 1 must be listed either in order or in groups since the if command
only evaluates the current MEMBER ID against the previous one.

© DataEase International Ltd

129

Chapter 7 : SQL Tech Tips
Using DataEase with SQL Data
The following pages describe how you can write DQL which works efficiently with SQL
engines.

How to……
Control Transactions in a DQL Procedure ...130

Join Tables in a DQL Script ..131

Specify an Explicit Inner Join in a DQL Procedure ...132

Join Tables Stored on Different Engines ..133

Join Two Independent One-to-Many Relationships ...134

Avoid Redundant Processing in a DQL Procedure ..135

Improve Processing Speed by Creating a View from Which to Query the Data136

Use Stored Procedures in a DQL Script ...138

Replace Explicit DQL Locking Commands by Creating a Semaphore139

Avoid Deadlocks ...140

Detect Deadlocks ...142

Prevent Deadlocks ...143

Improve Performance by Avoiding Inconvertible DQL Expressions145

© DataEase International Ltd

130

How to Control Transactions in a DQL Procedure
Question
When I write a DQL Procedure that accesses SQL data, DataEase seems to treat the whole
procedure as a single transaction. Is there any way around this?
Solution

1. Divide the procedure into logical transactions.
2. Use the DataEase begin transaction and commit commands to tell DataEase which portions

of the script constitute those individual transactions.

Example
for RESERVATIONS ;

 begin transaction

 enter a record in NEW_RESERVATIONS

 copy all from RESERVATIONS .

 commit

 end -- for

This example tells DataEase to: (1) open the Native RESERVATIONS table and process all
the records, (2) issue a begin transaction command to the server, (3) enter a new record in the
NEW_RESERVATIONS table on the server, and (4) commit each record as it is entered.

Discussion
As a DQL Procedure modifies records, the modified records are immediately available for use
as part of a condition or operation. However, there may be times when you want to save
groups of changes as they are completed. In this case, you can use the DQL begin transaction
and commit commands to divide the procedure into a group of smaller transactions. If you do
not use the begin transaction and commit commands, DataEase treats the entire procedure as
a single transaction.
For example, in the above sample script, if the server determines that a record is a duplicate,
that individual transaction fails. Without the begin transaction and commit statements, if the
insertion of record number 197 of 200 fails, all 196 previous insertions are rolled back.
The purpose of this script is twofold. This script allows you to enter duplicate records since
DataEase doesn't require you to create a unique field in a Native table. This script also
transfers the RESERVATIONS data from the Native table to a new table on the server and
simultaneously eliminates duplicate records since they are not allowed on the server.

Tip
You may also find it useful to divide some of your larger procedures into a series of small
procedures which are executed by a single control procedure.

© DataEase International Ltd

131

How to Join Tables in a DQL Script
Question
How do I instruct DataEase to perform any necessary table joins when I write a DQL
Procedure?
Solution
DataEase performs the join automatically. The type of script you define determines the type of
join that DataEase performs on the server. Except for the following case, DataEase performs a
left outer join on any tables that are joined in a script.
Example
When you define a script that contains nested for commands, with no intervening DQL
statements, DataEase performs an inner join on the two tables.

for ACTIVITIES ;

 for MEMBERS

 list records

 ACTIVITIES ACTIVITY;

 LASTNAME

 MEMBERID .

 end end

This example tells DataEase to: (1) process all the ACTIVITIES records, and (2) for each
ACTIVITIES record, list the name of the activity and the LAST NAME and MEMBER ID from
each related MEMBERS record.
The result of the join is a list of activities that currently have members who favor the activity.
Any activities without members who list that activity as their favorite are not listed. Additionally,
any members who haven't indicated a favorite activity are not listed.

© DataEase International Ltd

132

How to Specify an Explicit Inner Join in a DQL Procedure
Question
Is there an easy way to force DataEase to perform an inner join when it would normally
perform a left outer join?
Solution
When you write the script, create an ad hoc relationship to select the related records. Name
the relationship and enter the keyword inner: before the relationship name, as demonstrated in
the following example.
Example

for MEMBERS ;

list records

any ACTIVITIES named "inner: favorites" with (ACTIVITY =
MEMBERS FAVORITEACTIVITY) ACTIVITY;

MEMBERID ;

LASTNAME .

end

This example tells DataEase to process all the MEMBERS records but list the ACTIVITY,
MEMBER ID, and LAST NAME from only those MEMBERS records that have at least one
related ACTIVITIES record.

Discussion
Whenever a procedure requires data from two different database tables, DataEase temporarily
joins (merges) the two tables. Tables can be joined by an outer join that selects all parent
(Primary form) records and all child (related form) records or an inner join that selects only
those parent records with at least one matching child record.
By default, DataEase uses a left outer join to join two tables (selects all parent records
regardless of whether any matching child records exist). To make DataEase use an inner join
instead of a left outer join, simply insert the prefix inner: immediately before the unique
relationship name following the named relational operator.

Tip
As an alternative, you can specify inner: as a prefix in the Optional Relationship Name field on
the Relationships form.

© DataEase International Ltd

133

How to Join Tables Stored on Different Engines
Question
How can I create a procedure that lists or manipulates data stored on two different types of
database engines?
Solution
When you write a script like the example shown below, and the data is stored on two separate
servers (regardless of engine type), DataEase must perform the join on the workstation.
Depending on the number of records the script selects, performing a join on a workstation can
have a significant impact on performance. If there are any selection criteria, the selection is
performed by the SQL engine before the join is performed by DataEase at the workstation.

Example
for ACTIVITIES ;

list records

ACTIVITY in groups ;

all MEMBERS MEMBER ID.

end

This example tells DataEase to: (1) open the ACTIVITIES table and group the records by
activity, and (2) list the name of the activity and the last names of all the members who chose
that activity as their favorite. The processing required to find the matching member records
must be performed on the workstation because the MEMBERS and ACTIVITIES tables are
stored on different servers.

Caution
Any time DataEase has to perform a join on a workstation, performance is affected. If the script
selects a large number of records, the impact on performance can be significant. If you find
that you are frequently joining tables across servers, you may find it worthwhile to move a table
from one server to another to improve performance.

© DataEase International Ltd

134

How to Join Two Independent One-to-Many Relationships
Question
What happens internally when I write a script that contains nested for commands that access
two separate one-to-many relationships?
Solution
This scenario generates a disjoint report. A disjoint report combines information from two or
more independent relationships. If your script requests data from two (or more) independent
one-to-many relationships, DataEase performs the first join on the server. Any additional
processing that is required is done at the workstation. Depending on the number of records the
script selects, a disjoint report can have a significant impact on performance.
Example

for ACTIVITIES

list records

ACTIVITY in groups ;

all MEMBERS LASTNAMEin order ;

all CLUB ACTIVITIES CLUBNAMEin order .

end

This example tells DataEase to: (1) process all the ACTIVITIES records listing the activity in
groups, and (2) for each activity, list the last names of all the members who favor that activity
along with the names of all the clubs that offer the activity.

Discussion
The ACTIVITIES table is related to both the MEMBERS and the CLUB ACTIVITIES tables, but
these two tables are not related to each other.
When this script is processed, DataEase joins ACTIVITIES and MEMBERS using the SQL
engine, but the additional processing needed to join the ACTIVITIES and CLUB ACTIVITIES
data must be performed at the workstation.
If one of the one-to-many relationships was instead a one-to-one relationship, in the last all
statement or you used the highest of or any statement (under the list records command), and
all the data was stored on the same server, both joins could be performed on that engine.

© DataEase International Ltd

135

How to Avoid Redundant Processing in a DQL Procedure
Question
How do I avoid making DataEase request the same data repeatedly in a script?
Solution
When processing a procedure, DataEase is sometimes forced to request the same records
more than once from the SQL engine. If you specify an action that causes DataEase to
perform redundant processing, the impact on performance can be significant. Two examples
that cause redundant processing are shown in this tip.
Example 1

for RESERVATION SUMMARY ;

list records

MEMBERIDin groups ;

TOTALSPENT;

all RESERVATIONS LASTNAME;

sum of RESERVATIONS TOTALDUE.

end

This script tells DataEase to: (1) process all the records in the RESERVATION SUMMARY
table listing the MEMBER ID in groups and the TOTAL SPENT by that member, and (2) for
each record in RESERVATION SUMMARY, find all the related records in RESERVATIONS,
list the last name of each member, and calculate the total amount of all their open
reservations. This script requests the same aggregate twice. TOTAL SPENT is a Virtual field
on the RESERVATION SUMMARY form that is calculated by totaling the values in the TOTAL
DUE field in all the related records in the RESERVATIONS table.

Example 2
 for RESERVATION SUMMARY ;

 if TOTALSPENT> 5000 then

 for RESERVATIONS

 list records

 MEMBERID;

 LASTNAME;

 CLUBNAME.

 end -- for

 end -- if

 end -- for

In Example 2, performance is reduced because the procedure contains a nested for command
inside a DQL conditional statement. If a procedure contains a for or all command inside a
case, if, or while statement, DataEase first tests each record against the condition and then
requests the record again from the SQL engine when processing the nested action(s).
If you instead include the criteria in the if statement as selection criteria in the for statement
(using a with clause), DataEase only has to issue one SELECT statement for the whole file
instead of multiple selects for each record.

© DataEase International Ltd

136

How to Improve Processing Speed by Creating a View from
Which to Query the Data
Question
When I write a script that requests just a few columns from an SQL table that contains many
columns, the processing speed seems to be extremely slow. How can I speed it up?
Solution
When you request data from an SQL table that contains many columns, regardless of how
many columns you request, DataEase returns all the columns for each record selected. This
can have a significant impact on performance.
If the script is one that you run frequently, or if you have several DQL Procedures that require
the same or similar information from such a table, you will improve processing speed
dramatically by creating a view that contains just those few columns and updating your scripts
to reference the view rather than the original table. For example, let's assume that Club
ParaDEASE buys a mailing list of potential members and sends a detailed questionnaire out to
each individual on the list. Only those individuals who respond are then entered into a new
SQL table called QUESTIONNAIRE. Assuming that the QUESTIONNAIRE table contains 200
columns, the two scenarios that follow would benefit greatly from the creation of separate
views based on the QUESTIONNAIRE table.

Example 1
Suppose you want to run a procedure that produces a letter, thanking each respondent for
their participation in the survey. This procedure requires only six of the 200 fields (e.g.,
FIRST_NAME, LAST_NAME, STREET, CITY, STATE, and ZIP). Performance would be
greatly improved by creating a view that contains just the above-mentioned fields and writing
the following script:

for Q_VIEW1

list records

FIRST_NAME;

LAST_NAME;

STREET ;

CITY;

STATE;

ZIPin order .

end

Example 1 tells DataEase to select and list all the records from the view called Q_VIEW1,
sorting them in zip code order. This script will perform noticeably faster than one that uses
QUESTIONNAIRE, since there are only six columns for DataEase to return from the server.

© DataEase International Ltd

137

Example 2
In the second scenario, let's suppose you want to produce a report that lists the percentage of
Yes and No answers to each question on the questionnaire. Rather than create a DQL
Procedure to access the QUESTIONNAIRE table and calculate the percentages using DQL,
performance would be greatly improved by creating a view that generates the requested
percentages and accesses the view in the script, as shown below:

for Q_VIEW2 ;

list records

Q1PERCENTY ;

Q1PERCENTN ;

Q2PERCENTY ;

Q2PERCENTN;

...

end

This example tells DataEase to select all the records from a view called Q_VIEW2, listing the
percentages that the server has already generated.

Tip
Views are also frequently used to improve performance in certain record entry situations. For
example, views are recommended if you frequently use the dynamic lookup feature to retrieve
related data.
A dynamic lookup brings back all the fields from the related table. If any of those fields are
virtual calculations or lookups, many additional SELECT statements are issued, slowing data
access time dramatically. A more efficient strategy is to create a view that displays just the
fields necessary to select the appropriate record.

© DataEase International Ltd

138

How to Use Stored Procedures in a DQL Script
Question
Since I am accessing data on Sybase SQL Server, there are a number of stored procedures I
would like to be able to execute when I'm running a DQL Procedure. Is there an easy way to
do that?
Solution
Use the exec SQL command within your script to execute the required stored procedure.
Example

exec SQL at CONN1 EXECUTE ARCHIVE_OLD_MEMBERS

WHERE EXPIRATION_DATE <': current date' ;

…where CONN1 is the Connect_ID that identifies the source server and database. This
example tells DataEase to execute a stored procedure called ARCHIVE_OLD_MEMBERS.

Discussion
Some SQL engines, including Microsoft/Sybase SQL Server, let you define and save stored
procedures (also called precompiled procedures). Stored procedures are collections of SQL
statements that are compiled the first time they are executed and stored in a precompiled
format so that subsequent executions of the procedure are very fast. If you are using
DataEase with an SQL engine that saves stored procedures, you can use the exec SQL
command to run a stored procedure.

Note: Since the execution of a stored procedure is almost instantaneous, stored procedures
are an ideal way to enhance performance. We strongly recommend that you use stored
procedures whenever possible.
To find out if your SQL engine supports stored procedures, see your DataEase Engine
Information Guide and your SQL engine documentation.

Tip
When you use the DataEase Backup Application and Restore Application menu options (or the
equivalent DQL commands), DataEase only backs up the application definition files and data.
Any stored procedures or other server operations associated with the application are not
backed up. For this reason, we recommend that you define all the stored procedures, rules,
etc. that your application requires as DQL Procedures (using the exec SQL command).
Once these features exist as DQL Procedures, they will be backed up with the application and
can be easily migrated to a different server or database. After you restore your application, you
just have to run the appropriate DQL Procedures to recreate the performance-enhancing SQL
features.

© DataEase International Ltd

139

How to Replace Explicit DQL Table and Field Locking
Commands in a Procedure by Creating a Semaphore
Question
Can I use DQL locking commands to lock data on my SQL engine?
Solution
The locking commands available in DQL control locking in Native DataEase forms only. When
used with SQL tables, the DQL locking commands are ignored. If there are multiple users
accessing the same SQL tables, all required locks are placed by the SQL engine. There are no
DataEase options or DQL commands that let you explicitly control the locks placed by the SQL
engine.
One way to lock a procedure for exclusive access is to define a semaphore. A semaphore is a
flag used to regulate the number of users who can simultaneously access a network resource.
The following examples describe how you can define a semaphore that lets only one user at a
time run a procedure.

Example 1
Defining a DataEase-based Semaphore. If the only users who can access the SQL tables in
the application are DataEase users signed on to the same application, you can use a
DataEase-defined semaphore to lock a procedure for exclusive access. To define a DataEase-
based semaphore:

1. Define a Native DataEase table. This table needs just one 1-character field.
2. Modify each procedure that you want to lock exclusively to include the following query

statements:
lock file NATIVEFORM exclusive.

(Query statements for

the procedure that you want to

to lock exclusively)

unlock file NATIVEFORM. (or end the procedure)

…where NATIVEFORM is the Native table you defined in Step 1

When you include the lock and unlock commands in the query, only one user at a time can
execute the procedure. The first user who runs the procedure places an exclusive lock on the
Native DataEase table that you defined in Step 1
Any other users who try to run this procedure are locked out until the lock placed on
NATIVEFORM is released (this happens when either the unlock command is executed or the
procedure has finished running).

© DataEase International Ltd

140

Example 2
Defining an SQL Engine-based Semaphore. If other DataEase applications and/or other front-
end products will access the SQL tables in the current application, you must use an SQL
engine-defined semaphore to lock a procedure for exclusive access. To define an SQL engine-
based semaphore:

1. 1 Define an SQL table in a database that all users can access. Enter one row of data into
the table.

2. 2 Modify each procedure that you want to lock exclusively to include the following query
statements:

exec SQL at CONN1 BEGIN TRANSACTION ;

exec SQL at CONN1 UPDATE TABLEA SET COLUMN1 = COLUMN1 + 1;

(Query statements for

the procedure that you want to

to lock exclusively)

exec SQL at CONN1 COMMIT TRANSACTION;

..where CONN1 is the name of the Connect_ID that identifies the SQL Server and database
and TABLEA is the name of the SQL table you defined in Step 1 and COLUMN1 is a column in
this table.
When you include the exec SQL commands in the query, only one user at a time can execute
the procedure. The first user who runs the procedure updates the single row in the SQL table
that you defined in Step 1, thus locking the SQL table exclusively. Any other users who try to
run this procedure are locked out until the exclusive lock on the table is released (this only
happens when the COMMIT TRANSACTION command is issued to the server).

© DataEase International Ltd

141

Deadlocks
The three Tech Tips that follow are concerned with deadlocks and how to prevent them.
A deadlock occurs when two users simultaneously try to perform an action that requires an
exclusive lock on a resource which one user has already placed a shared lock on. When a
deadlock occurs, the SQL engine grants the required exclusive lock to one of the users based
on engine-specific criteria. For example, if you are using Microsoft SQL Server, the exclusive
lock is granted to the user who has logged the most CPU time prior to the deadlock.
The three methods of dealing with the possibility of deadlocks that occur during transaction
processing are:
• Query Standardization
• Deadlock Detection
• Deadlock Prevention

Each method is explained below and on the following pages.

© DataEase International Ltd

142

How to Avoid Deadlocks by Duplicating the Order in Which
Tables Are Accessed in Multiple Scripts
Query Standardization is the process of developing a standard order in which tables and rows
are accessed and updated in a script.
When you define two or more procedures that update the same tables and can be executed at
the same time, try to write each script so that all the tables are accessed and updated in the
same order. If your scripts access tables in random order, deadlocks may occur.
If you standardize on the order in which tables are accessed in queries, you can solve many of
the deadlock problems you may be experiencing.

© DataEase International Ltd

143

How to Detect Deadlocks
Deadlock Detection is a technique in which a transaction is placed inside a while loop in order
to ensure that processing breaks off after a set number of attempts if a deadlock is detected
while DataEase is processing a transaction.
To detect whether a deadlock has occurred while DataEase is processing a transaction, you
can set up a series of steps that verify whether the transaction is committed successfully or
not. If the commit is successful, the procedure should run to completion; otherwise, the query
should deal with the failure of the transaction. This technique ensures that a deadlock cannot
last indefinitely.
The procedure for detecting deadlocks uses the current status and current SQLCODE
variables and two temporary variables to determine the status of the update and commit and
how many attempts were made to complete the transaction. The following example describes
how to detect deadlocks in DQL Procedures.
Example
 define temp " COMSTAT " number .

 define temp " KOUNT " number .

 assign temp COMSTAT := -1 .

 assign temp KOUNT := 0 .

 while temp COMSTAT = -1 do

 begin transaction

 for SAVINGS ACCOUNTS ;

 if current SQLCODE = 1205 then

 break

 else

 modify records

 ACCOUNT BALANCE := ACCOUNT BALANCE - DEBITS .

 end -- 1st if

 commit .

 assign temp COMSTAT := current status .

 assign temp KOUNT := + 1 .

 end -- for

 if temp KOUNT > 10 then

 message " Sorry, DQL transaction

 can't be processed now. " window .

 exit .

 end -- 2nd if

 end -- while

The first two lines in the query read:

define temp "COMSTAT" number .

define temp "KOUNT" number .

© DataEase International Ltd

144

This part of the script tells DataEase to define two temporary variables. The first variable,
COMSTAT, will be used to determine if the preceding DQL commit command is successful.
The second variable, KOUNT, will be used to count the number of times DataEase attempts to
commit the DQL transaction.
The next part of the query reads:

assign temp COMSTAT := -1 .

assign temp KOUNT := 0 .

This part of the script assigns a value of -1 to the COMSTAT variable and a value of 0 to the
KOUNT variable. Subsequently, when DataEase processes the following while statement, the
value of the COMSTAT variable is replaced by the value in the current status variable. The
current status value is -1 if the transaction is not committed; 0 if it is committed.
The next part of the script reads:

 while temp COMSTAT = -1 do

 begin transaction

 for SAVINGS ACCOUNTS ;

 if current SQLCODE = 1205 then

 break .

 else

 modify records

 ACCOUNT BALANCE := ACCOUNT BALANCE - DEBITS ;

 end -- if

 commit

 assign temp COMSTAT := current status .

 assign temp KOUNT := temp KOUNT + 1 .

This part of the script tells DataEase to set up a while loop that will keep trying to process the
following DQL transaction until it is either committed or the value in the KOUNT variable
exceeds 10. The current SQLCODE variable is used to break out of the for loop if a deadlock
has occurred (1205 is the error code for deadlock on Microsoft SQL Server). As long as the
value of the COMSTAT variable remains -1, the value of the KOUNT variable is increased by
one each time DataEase processes the while statement.
When the DQL transaction is committed or the value in the KOUNT variable exceeds 10,
DataEase breaks out of the while loop and continues processing the remainder of the query.
The lines:
 begin transaction for SAVINGS ACCOUNTS ;

 if current SQLCODE = 1205 then

 break .

 else

 modify records

 ACCOUNT BALANCE := ACCOUNT BALANCE - DEBITS ;

 end -- if

 commit

© DataEase International Ltd

145

..are the actual DQL transaction that we are trying to process without running into a deadlock.
The begin transaction and commit commands tell DataEase to process the entire for loop as a
single transaction. The for statement tells DataEase to modify all the records in the SAVINGS
ACCOUNT form by subtracting the DEBITS amount from the ACCOUNT BALANCE amount.
Since all the modifications are treated as a single transaction, if any single modification fails (in
the case of a deadlock or any other reason), the entire transaction is rolled back. If the
transaction cannot be committed, the COMSTAT variable retains the value of -1 and the
KOUNT variable is incremented by one.
The next part of the script reads:

if temp KOUNT > 10 then

 message " Sorry, DQL transaction|

 can't be processed now. " window .

 exit .

 end -- if

 end -- while

This section tells DataEase to look at the value in the KOUNT variable each time the while
statement is processed. If the value of the KOUNT variable exceeds 10, DataEase displays a
message stating: Sorry, DQL transaction cannot be processed now.
If the value of the COMSTAT variable becomes zero before the value of the KOUNT variable
exceeds 10, DataEase exits out of the while loop.

© DataEase International Ltd

146

How to Prevent Deadlocks
To prevent a deadlock from occurring while DataEase is processing a transaction, you can use
a technique called gating. Gating prevents deadlocks by requiring that each user who runs the
procedure acquires an exclusive lock on a special table before he/she can execute the
procedure. Although this technique prevents deadlocks, it reduces concurrency and should be
used only where recovery from a deadlock cannot be ensured.
The procedure for preventing deadlocks uses the DQL exec SQL command to create a barrier
action that blocks other users from accessing the data to be modified by the transaction.
Example
 exec SQL at CONN1 BEGIN TRANSACTION ;

 exec SQL at CONN1 UPDATE BARRIER_FORM

 SET BLOCK_FIELD = BLOCK_FIELD + 1;

 for SAVINGS ACCOUNTS ;

 modify records

 ACCOUNT BALANCE := ACCOUNT BALANCE - DEBITS .

 end

 exec SQL at CONN1 COMMIT TRANSACTION ;

…where CONN1 is the name of the Connect_ID that identifies the SQL Server and database
where the data is stored.
The first two sxript statements read:

exec SQL at CONN1 BEGIN TRANSACTION ;

exec SQL at CONN1 UPDATE BARRIER_FORM

SET BLOCK_FIELD = BLOCK_FIELD + 1;

This part of the script uses the exec SQL command to initiate a transaction (but not the actual
DQL transaction we want to protect against a deadlock).This preliminary SQL transaction
updates the BLOCK FIELD in every record in a table named BARRIER FORM. This form
should only contain one record.

Note: Once a user gets an exclusive lock on the BARRIER FORM, no other DataEase user
can get past this barrier until the entire exec SQL transaction is committed. However, a user of
another front-end product or database application may still be able to lock the table we want to
modify before we gain access to it.

© DataEase International Ltd

147

The next part of the script reads:

for SAVINGS ACCOUNTS ;

 modify records

 ACCOUNT BALANCE := ACCOUNT BALANCE - DEBITS .

end -- for

This is the actual DQL transaction that we are trying to process without running into a
deadlock.The for statement tells DataEase to modify all the records in the SAVINGS
ACCOUNT table by subtracting the DEBITS amount from the ACCOUNT BALANCE amount.
The next part of the query reads:

exec SQL at CONN1 COMMIT TRANSACTION ;

Once the DQL transaction is completed, this statement commits the SQL transaction and
releases the lock on the BARRIER FORM. At this point, other DataEase users can access the
BARRIER FORM.

Caution
Although the DQL transaction cannot be deadlocked by another DataEase user in the same
application at this point, it may still be impossible to commit the transaction because a non-
DataEase user has locked the data, or the server is temporarily down, etc.

© DataEase International Ltd

148

How to Improve Performance by Avoiding Inconvertible DQL
Expressions
Question
What DQL expressions, if any, should I avoid when writing scripts?
Solution
When you define a DQL Procedure or a Quick Report, you should try not to select or sort data
based on inconvertible DQL expressions. Inconvertible DQL expressions are expressions that
currently have no SQL equivalent, i.e., they cannot be directly converted to SQL expressions.
If you use an inconvertible expression as part of the selection criteria in a DQL Procedure,
DataEase uses the SQL engine to retrieve the records that meet all the criteria except the
inconvertible expression(s). This set of records is then returned to the workstation where the
Native DataEase engine completes the processing that includes the inconvertible
expression(s). Depending on the number of records the script selects, using inconvertible
expressions can have a significant impact on performance.

Expressions that include any of the following DQL symbols or words are inconvertible:

ampm item presentvalue std. err.
cosh julian proper tanh
count lastfirst rate textpos
count of lastw sinh timeampm
firstc lower spellcurrency upper
firstlast midc spelldate variance
firstw midw spellmonth ~ (Soundex Wild Card Symbol)
futurevalue mod spellnumber
if percent spellweekday
installment period std. dev.

Example
for MEMBERS with LAST NAME = " ~ * SON " and

TOTAL DUE > 35 ;

list records

LASTNAME;

all FAMILY MEMBERS FIRSTNAME.

end

This example tells DataEase to: (1) select all the records in the MEMBERS table where the
end of the last name sounds like SON (e.g., Hansen, Johnson, Wilson) and the membership
dues are more than $35.00, (2) list the last name of each selected member, and (3) list the first
name from all the related records in the FAMILY MEMBERS table.
If the ~ wild card symbol does not have an equivalent operation on your SQL engine,
DataEase first retrieves all the MEMBERS records that have membership dues greater than
$35.00 from the server. Then the Native DataEase engine must perform the processing that
selects only the records that meet the "sounds like" selection criteria.

© DataEase International Ltd

149

Chapter 8 : DQL Lexicon
Alphabetical Language Reference
The DQL Lexicon is a complete list of all the DataEase Query Language concepts, terms, and
symbols presented in alphabetical order. In this lexicon, most entries begin on a separate
page. However, some entries continue for two or more pages. Each term is explained in the
following format (only relevant sections are included):

Type
Identifies the type of the term. DQL terms are divided into four main groups: commands,
functions, operators, and symbols. Each of these groups contains several subordinate types.
Purpose
Explains the general purpose of the term.
Syntax
Demonstrates the proper format in which the term is used. For an explanation of the syntax
format itself, see Typographical Conventions later in this chapter.
Returns
Specifies the type of value returned by a function or operator.
Usage
Provides additional details concerning the use of the term in general and special contexts.
LAN
Includes special considerations or restrictions that govern the use of the term when DataEase
is running on a LAN (Local Area Network).
Example
Demonstrates the use of the term in a DQL statement or script. When a complete script is
presented, an explanation of the script is included. If the script generates output, an example
of how the resulting output might appear is included (see example below).

Last Name First Name Middle Initial
Andersen Eric M
Anderson Eric S

A list appears in the right margin showing where you can use a DQL keyword. For example,
the figure below shows the lists for the count of and commit commands.

© DataEase International Ltd

150

DQL Lexicon Typographical Conventions
Except as noted below, the typographical conventions used in this lexicon are the same as
those used in the previous chapters. These conventions are explained in Chapter I, DQL
Basics.
Syntax Diagrams
In the syntax diagrams, items enclosed in brackets [] may or may not be included in the
statement. If they are included, the quotation marks and parentheses must appear where
shown. When multiple items are separated by a vertical bar |, any one of them may be used.
For example, in the syntax statement:

any TABLENAME|RELATIONSHIP

[named "UNIQUE RELATIONSHIP NAME"]

[with (selection criteria)] FIELDNAME ;|.

You can use either a TABLENAME or a RELATIONSHIP in the script statement. A "UNIQUE
RELATIONSHIP NAME" can be included or not. If selection criteria are included in the
statement, the criteria must be enclosed in parentheses. A FIELDNAME must be included at
the end of the statement, followed by either a comma or semicolon.
In the syntax diagrams, the terms shown in lower case (any, named, and with) are DQL
keywords. The words shown in upper case (FORMNAME, TABLENAME, RELATIONSHIP,
UNIQUE RELATIONSHIP NAME, and FIELDNAME) are generic terms. In an actual script you
replace such terms with specific data by typing in the actual database names or selecting the
appropriate items from the Script Editor pick lists.
Most examples in this lexicon are based on the MEMBERS and RESERVATIONS tables,
included in the Club ParaDEASE sample application.

© DataEase International Ltd

151

Symbols
Symbols are tools that clarify a script's meaning, perform basic math operations, and help
retrieve data when you cannot recall the exact values you want a query to retrieve. The
symbols listed below can be used in Field Derivation Formulas as well as in a DQL script.
There are four groups of DQL symbols as specified below:
• Punctuation symbols are used to clarify, separate, and conclude various operations specified

in a script. The double dash symbol precedes comments used to annotate a script.
• Math symbols are used to perform arithmetic operations on numeric values.
• Wild card symbols are used to specify unknown characters in selection criteria text values.

*(asterisk) represents any number of characters
? (question mark) represents a single character
~ (tilde) represents a sound pattern

• Comparison symbols are used to compare one value to another. The assignment operator
symbol is used to assign a value to a field or variable.

For a full explanation of any DQL symbol, see its corresponding entry in this section. The
symbols are presented first in the lexicon, beginning on the next page.

© DataEase International Ltd

152

+ (addition)
Type
Arithmetic Symbol
Purpose
The + symbol tells DataEase to add Value 2 to Value 1
The result is the sum of the addition.
Syntax
VALUE 1 + VALUE 2

Returns
A numeric value.
Example
TOTAL DUE := ADULT FEES + CHILD FEES ;

- (subtraction)
Type
Arithmetic Symbol
Purpose
The - symbol tells DataEase to subtract Value 2 from Value 1.
The result is the remainder of the subtraction.
Syntax
VALUE 1 - VALUE 2

Returns
A numeric value.
Example
SALE PRICE := RESERVATION PRICE-DISCOUNT;

© DataEase International Ltd

153

/ (division)
Type
Arithmetic Symbol
Purpose
The / symbol tells DataEase to divide Value 1 by Value 2
The result is the quotient of the division.
Syntax
VALUE 1 / VALUE 2

Returns
A numeric value.
Usage
When typing a fraction (10 / 12, for example), DataEase requires that you type a space before
and after the / symbol.
Example
MONTHLY FEES := ANNUAL FEES / 12 ;

* (multiplication)
Type
Arithmetic Symbol
Purpose
The * symbol tells DataEase to multiply Value 1 by Value 2
The result is the product of the multiplication.
Syntax
VALUE 1 * VALUE 2

Returns
A numeric value.
Example
CHILD FEES := NO OF CHILDREN * 15.00

© DataEase International Ltd

154

 * (asterisk)
Type
Wild Card (Character Pattern) Symbol
Purpose
The * asterisk wild card character can be used to substitute for any number of unspecified
characters in an alphanumeric string. It can be used up to twice in a string to show that an
unspecified number of characters may have been omitted. The symbol can be used in any
logical comparison or record selection context.
Example 1
for MEMBERS with LAST NAME = "~Read" ;

 list records

 LAST NAME in order ;

 FIRST NAME .

 End

This script tells DataEase: List the records for members whose last name ends with the letters
son. The output for this script, in alphabetical order by LAST NAME, might look as follows:

Last Name
Anderson
Carlson
Christenson
Jackson
Johannsson

Example 2
for MEMBERS with LAST NAME = "*s?n" ;

 list records

 LAST NAME in order .

 end

This script tells DataEase: List the members whose last name ends with the letters s and n,
with an unknown value between them. The report output for this script might look as follows:

Last Name
Andersen
Anderson
Carlson
Christenson
Jackson
Johannsson

© DataEase International Ltd

155

? (question mark)
Type
Wild Card (Single Character) Symbol
Purpose
The ? wild card character is used to substitute for exactly one unspecified character in an
alphanumeric string. It can, however, be used repeatedly in a field to specify the exact number
of characters that have been omitted. The symbol can be used in any logical comparison or
record selection context.
Example 1
for MEMBERS with LAST NAME = "Anders?n" ;

 list records

 LAST NAME in order ;

 FIRST NAME ;

 MIDDLE INITIAL .

 end

This script tells DataEase: list the records for members named Andersen or Anderson (it also
lists members named Andersan, Andersin, or Andersun, if any exist). The output for this script,
in alphabetical order by LAST NAME, might look as follows:

Last Name First Name Middle Initial
Andersen Eric M
Anderson Eric S

Example 2
 for MEMBERS with LAST NAME = "W?s*" ;

 list records

 LAST NAME in order .

 end

This script tells DataEase: list the members whose last name contains a W followed by a
single character, then s, then an unknown number of unknown characters. The output from this
script might look as follows:

Last Name
Wasserman
Washburn
West
Wyshner

© DataEase International Ltd

156

~ (tilde)
Type
Wild Card (Sound Pattern) Symbol
Purpose
The ~ wild card character is used to find data that "sounds like" a specified text string. The ~
symbol can be used before any number of characters or words; it locates all the records that
have a similar sound to the specified string. In making comparisons with the ~, DataEase
matches the consonant pattern; vowels and spaces between words are ignored. Consonants
with similar sounds (such as f and ph) are treated as the same character. The ~ symbol can be
used in any logical comparison or record selection context and may be used in a text string
after another wild card symbol (* or ?).
Example
 for MEMBERS with LAST NAME = "~Read" ;

 list records

 LAST NAME in order ;

 FIRST NAME .

 end

This script tells DataEase: list the records for members whose last name sounds like Read.
The report output for this script, arranged in alphabetical order by LAST NAME, might look as
follows:

Last Name First Name
Rada Amanda
Reardon Paul
Redzepi Zudi
Reede Shannon
Rhode Gertrude
Rhodes Gisela
Ride Sheryl

© DataEase International Ltd

157

: (colon)
Type
Punctuation Symbol
Purpose
A colon is inserted between a field name and one or more statistical operators when you want
to include statistics in the report output.
Syntax
FIELDNAME : statistical operators ;|.

Example
 for MEMBERS ;

 list records

 LAST NAME in order ;

 TOTAL DUE : item sum .

 end

This script tells DataEase: list the MEMBERS records showing each member's LAST NAME,
TOTAL DUE, and the total of all the TOTAL DUE values at the end of the report. The report
output for this script, arranged in alphabetical order by LAST NAME, might look as follows:

Last Name Total Due
Adams 85.00
Albert 120.00
Anders 120.00
Andersen 70.00
Anderson 115.00
Archer 155.00
Baldwin 100.00

 TOTAL: $765.00

© DataEase International Ltd

158

() (parentheses)
Type
Punctuation Symbol
Purpose
Parentheses are used as separators in selection criteria and function arguments and to clarify
the sequence of mathematic operations. The use of parentheses is especially important when
combining selection criteria using the and and or operators or when clarifying the order of
evaluation of otherwise ambiguous expressions and operations.
Example
 for MEMBERS with TOTAL DUE > 75 and

 (STATE = "NY" or STATE = "NJ") ;

 list records

 LAST NAME in order ;

 TOTAL DUE ;

 STATE .

 end

With the parentheses placed as shown, this script tells DataEase to list all the members from
either New York or New Jersey whose TOTAL DUE is greater than $75
The report output from this script, arranged alphabetically by LAST NAME, might look as
follows:

Last Name Total Due State
Baldwin 100.00 NY
Crandall 85.00 NY
Fitzpatrick 100.00 NY
Morales 115.00 NY
Morrison 100.00 NJ
Parker 105.00 NJ
Rutschow 100.00 NY
Stone 100.00 NY

Without parentheses, this script is ambiguous (it could be interpreted as all New York
members whose total due is greater than $75 and all New Jersey members).
In the absence of parentheses, the default order of evaluation is: multiplication and division
operations, addition and subtraction operations, comparison operators, and finally, the and and
or operators. When operations of equal priority are involved, the expression is evaluated from
left to right. When evaluating expressions in nested parentheses, the innermost expressions
are evaluated first.

© DataEase International Ltd

159

. (period)
Type
Punctuation Symbol
Purpose
A period marks the end of an action that may or may not be followed by other actions.
In a script, you must insert a period after:
• Any DQL Control command.
• Any assign, break, define, or exit Procedural command and after each action in a case, if, or

while command.
• The last item in a list records, modify records, delete records, or enter a record Processing

command.
• Except when the period is used as a decimal point in a numeric value, you must insert a

space between an action item and the terminating period.

Example
 for MEMBERS ;

 list records

 LAST NAME in order ;

 TOTAL DUE .

 end

This script tells DataEase: list each member's LAST NAME and TOTAL DUE. The report
output, arranged in alphabetical order by LAST NAME, might look like this:

Last Name Total Due
Adams 85.00
Albert 120.00
Anders 120.00
Andersen 70.00
Anderson 115.00
Archer 155.00
Baldwin 100.00
Beauchamp 35.00

© DataEase International Ltd

160

; (semicolon)
Type
Punctuation Symbol
Purpose
A semicolon is used to separate items in a script action. The semicolon is always used after a
for command that specifies the script's Primary table; after ad hoc selection criteria are
specified; and after each output item except the last in a list records, modify records, or enter a
record command.
The semicolon is used after a for command that specifies a script's Primary table; it is not used
with a nested for command that specifies a table other than the Primary table.
Syntax
FIELDNAME|CONSTANT VALUE ;

Example
 for MEMBERS with TOTAL DUE > 180 ;

 list records

 LAST NAME in order ;

 TOTAL DUE ;

 STATE .

 end

This script tells DataEase: For members whose TOTAL DUE is greater than $180, list each
member's LAST NAME, TOTAL DUE, and STATE. The report output, arranged in alphabetical
order by LAST NAME, might look as follows:

Last Name Total Due State
Christino 280.00 VA
Perrault 215.00 CT
Stafford 185.00 AZ
Strachan 205.00 OR

© DataEase International Ltd

161

" " (quotation marks)
Type
Punctuation Symbol
Purpose
Quotation marks are always used to enclose a text constant. Quotes are also used to enclose
the name of a variable in a define command, to enclose an custom relationship name when it
is first specified in a script by the named operator, and to enclose the name of a Document,
Table, or Import specified in a Control Command.
Syntax
 "TEXT CONSTANT" define global|temp "VARIABLE NAME" .

sum of MEMBERS named "HIGH VOLUME" with

TOTAL DUE > 500 ;

run procedure "MEMBERSHIP LIST" .

Example
 for MEMBERS with STATE = "NY" ;

 list records

 LAST NAME in order ;

 TOTAL DUE ;

 STATE .

 End

This script tells DataEase: For members who live in New York, list each member's LAST
NAME, TOTAL DUE, and STATE. The report output, arranged in alphabetical order by LAST
NAME, might look as follows:

Last Name Total Due State
Baldwin 100.00 NY
Callahan 70.00 NY
Cheng 65.00 NY
Cohen 70.00 NY
Crandall 85.00 NY
Fitzpatrick 100.00 NY
Meier 70.00 NY
Morales 115.00 NY

© DataEase International Ltd

162

:= (assignment operator)
Type
Operator Symbol
Purpose
The assignment operator symbol is used whenever the value of a variable or field is assigned
or modified.
Syntax
FIELDNAME : = ASSIGNED VALUE .

assign global|temp VARIABLE NAME : = ASSIGNED VALUE .

Example 1
LAST NAME : = data-entry LAST NAME .

This statement tells DataEase to modify the LAST NAME field by copying the value entered in
the LAST NAME field on the Data-entry form.

Example 2
assign temp DISCOUNT : = RESERVATIONS TOTAL DUE * 0. 15.

This script statement assigns a value to a temporary variable named DISCOUNT. The value
assigned to the variable is 15% of the TOTAL DUE value in the current RESERVATIONS
record.

Note: Do not confuse this symbol with the equal (=) sign which is used to compare one value
to another.

© DataEase International Ltd

163

< (less than)
Type
Comparison Operator Symbol
Purpose
The <(less than) symbol is used to compare one value to another. It specifies that the value to
the left of the symbol is less than the value to the right of the symbol.
Syntax
VALUE 1 <VALUE 2

Example
for MEMBERS with TOTAL DUE < 100 ;

This script statement selects MEMBERS records that have a value less than 100 in the TOTAL
DUE field.

<= (less than or equal to)
Type
Comparison Operator Symbol
Purpose
The <=(less than or equal to) symbol is used to compare one value to another. It specifies that
the value to the left of the symbol is less than or equal to the value to the right of the symbol.
Syntax
VALUE 1 <= VALUE 2

Example
for MEMBERS with TOTAL DUE <= 500 ;

This script statement selects MEMBERS records that have a value less than or equal to 500 in
the TOTAL DUE field.

= (equals)
Type
Comparison Operator Symbol
Purpose
The = (equals) symbol is used to compare one value to another. It specifies that the value to
the left of the symbol is equal to the value to the right of the symbol.
Syntax
VALUE 1 = VALUE 2

Example
for MEMBERS with TOTAL DUE = 100 ;

This script statement selects MEMBERS records that have a value equal to 100 in the TOTAL
DUE field.

© DataEase International Ltd

164

> (greater than)
Type
Comparison Operator Symbol
Purpose
The > (greater than) symbol is used to compare one value to another. It specifies that the
value to the left of the symbol is greater than the value to the right of the symbol.
Syntax
VALUE 1 > VALUE 2

Example
for MEMBERS with TOTAL DUE > 100 ;

This script statement selects MEMBERS records that have a value greater than 100 in the
TOTAL DUE field.

>= (greater than or equal to)
Type
Comparison Operator Symbol
Purpose
The >= (greater than or equal to) symbol is used to compare one value to another. It specifies
that the value to the left of the symbol is greater than or equal to the value to the right of the
symbol.
Syntax
VALUE 1 >= VALUE 2

Example
for MEMBERS with TOTAL DUE >= 100 ;

This script statement selects MEMBERS records that have a value greater than or equal to
100 in the TOTAL DUE field.

© DataEase International Ltd

165

- - (comment)
Type
Punctuation Symbol
Purpose
The - - (comment) symbol is used to insert annotative comments in a script. Comments have
no effect during the execution of the procedure.
Syntax
-- COMMENT TEXT

Example
 for MEMBERS with count of RESERVATIONS >= 7 ;

 list records

 LAST NAME ;-- THIS SCRIPT LISTS MEMBERS WHO

 MEMBER ID . -- TAKE THE MOST VACATIONS

 end

This script selects MEMBERS records that have at least seven matching RESERVATIONS
records and lists the members' LAST NAME and MEMBER ID values. The comment to the left
of the script has no effect on processing. DataEase ignores text that follows the double dash
comment symbol.

© DataEase International Ltd

166

abs (absolute value)
Type
Math Function
Purpose
The abs function converts a numeric value to a positive, unsigned numeric value.
Syntax
abs(NUMERIC VALUE)

Returns
A numeric value.
Usage
The numeric value in a Math function can be a constant value (as shown below), a variable, a
field value or an expression.
The abs function can only be used with a numeric value. A non-numeric value always returns a
value of 0.
Examples

abs(-453)

Returns: 453

abs(4.53)

Returns: 4.53

© DataEase International Ltd

167

acos (arccosine)
Type
Trigonometric Function
Purpose
The acos function calculates the arccosine of a numeric value. The result is an angle
expressed in radians between 0 and p.
Syntax
acos(NUMERIC VALUE)

Returns
A numeric value.
Usage
The numeric value in a Trigonometric function can be a constant value (as shown below), a
variable, a field value or an expression.
The valid range of the input value is -1 to 1
Examples
acos(0.5)

Returns: 1.047195755

acos(-0.8)

Returns: 2.49809154

© DataEase International Ltd

168

ad hoc relationship
Type
Concept
Purpose
Like a predefined relationship, an ad hoc relationship is a relationship between two sets of
records, but an ad hoc relationship is created as a script is processed instead of being
specified on the Relationships form during the Form Definition process. An ad hoc relationship
lets you easily access records in another table while processing a procedure. However,
because the ad hoc relationship isn't stored as a part of the database, it must be redefined in
each procedure.
An ad hoc relationship is created by combining a relational (or relational statistical) operator
with the name of an unrelated table, or the name of a predefined relationship to which new
selection criteria are added.
When you create an ad hoc relationship, the named operator is used to give the set of related
records a unique name. This lets DataEase identify each distinct set of records selected from a
given table.
Unlike predefined relationships, ad hoc relationships can also include comparisions based on a
rage, such as “between Current Date – 60 to Current Date”, as well as fields where the values
are not equal.
Syntax
relational operator TABLENAME | RELATIONSHIP

 [named "UNIQUE RELATIONSHIP NAME"]

[with (selection criteria)] FIELDNAME;|.

Usage
Once an ad hoc relationship is created with certain selection criteria, the criteria cannot be
changed during the remainder of the script. If you want to select another set of records, you
must create a new ad hoc relationship and give it a unique name using the named operator.
The FIELDNAME is required for all relational and relational statistical operators except count
of.
Example
 for MEMBERS with TOTALDUE > 100 ;

 list records

 LASTNAME in order ;

 sum of RESERVATIONS named "SPRING" with

(RESERVATION DATE between 03/21/95 to 06/20/95)
TOTALDUE.

 end

Since there is a predefined relationship between MEMBERS and RESERVATIONS based on
the MEMBER ID field, the statement:

 sum of RESERVATIONS named "SPRING" with

(RESERVATION DATE between 03/21/95 to 06/20/95)
TOTALDUE .

© DataEase International Ltd

169

..creates an ad hoc relationship by adding the additional RESERVATION DATE selection
criteria to the existing predefined relationship.
This script tells DataEase: (1) Select all the MEMBERS records that have a TOTAL DUE
greater than $100, (2) find all these members' reservations in the related RESERVATIONS
table that are dated between March 21 and June 20, 1995, and (3) for each record selected
from the MEMBERS table, list the member's last name and the total cost of that member's
Spring reservations.
If the predefined relationship used a custom relationship name and the script specified the
tablename instead of the custom relationship name, it would be necessary to restate the
predefined relationship criteria. For example, the statement above would read:

sum of RESERVATIONS named "SPRING" with

 (MEMBERID = MEMBERS MEMBER ID and

 RESERVATIONDATE between 03/21/95 to 06/20/95)

 TOTALDUE.

If we also want DataEase to list the sum of these members' Summer reservations, we have to
create a new ad hoc relationship and give it a unique name as shown below:

for MEMBERS with TOTALDUE > 100 ;

 list records

 LASTNAME in order ;

 sum of RESERVATIONS named " SPRING " with

 (RESERVATIONDATE between 03/21/95 to 06/20/95)
TOTALDUE ;

 sum of RESERVATIONS named " SUMMER " with

 (RESERVATIONDATE between 06/21/95 to 09/20/95)

 TOTAL DUE .

 end

© DataEase International Ltd

170

all
Type
Relational Operator
Purpose
The all operator selects every record in a related table that matches the current record being
processed.
Syntax
all TABLENAME|RELATIONSHIP

[named "UNIQUE RELATIONSHIP NAME"]

[with (selection criteria)] FIELDNAME;|.

Returns
The specified value from every matching record in the related table. The type of value returned
is the same as that of the specified field. For example, if you are selecting text fields, the
returned value is text.
Usage
The all operator can be only used to specify report output items in a list records command. It
cannot be used to specify selection criteria.
Example 1
 for MEMBERS with TOTAL DUE > 100 ;

 list records

 LAST NAME in groups ;

 all RESERVATIONS RESERVATION ID ;

 all RESERVATIONS TOTAL DUE .

 end

This script tells DataEase: (1) Select all the MEMBERS records that have a TOTAL DUE
greater than $100, (2) find all these members' reservations in the related RESERVATIONS
table, and (3) for each record selected from the RESERVATIONS table, list the
RESERVATION ID and TOTAL DUE.
The output from this script, arranged in groups by LAST NAME (from the MEMBERS table),
might look as shown below:
Last Name Reservation ID Total Due
Albert 00197 4,760

00359 3,220
Anders 00015 4,420

00421 2,290
00298 2,480

Anderson 00077 4,320
Archer 00085 4,796
Bennington 00002 5,662
Bickford 00141 2,800

00356 3,650
Christino 00139 5,450

© DataEase International Ltd

171

Example 2
Example 2 demonstrates how you can use the all operator to access information from two or
more related tables on the same relationship level. The relational operators can also be used
to navigate from one table to a third table (which is not directly related) by using an
intermediate relationship, as shown in the sixth line of the script.

 for ACTIVITIES

 list records

 ACTIVITY in groups ;

 all CLUB ACTIVITIES CLUB NAME ;

 all MEMBERS LAST NAME ;

 all MEMBERS all FAMILY MEMBERS FIRST NAME .

 end

This script tells DataEase: (1) Select all the ACTIVITIES records and group them by
ACTIVITY, (2) find all the related records in CLUB ACTIVITIES and list the name of each club
that offers the activity, (3) find all the related records in MEMBERS and list the last name of
each member who favors the activity, and (4) find all the related MEMBERS records (for each
ACTIVITIES record), and for each MEMBERS record, find all the related FAMILY MEMBERS
records and list the value in the FIRST NAME field.
The output from this script, arranged in groups by ACTIVITY, might look as follows:

Activity: Baseball

Club Name Last Name First Name
Playa Blanca Connelly John
Cancun Erin
Punta Cana Patrick
Huatulco Mary
St. Lucia Rada Amanda
Columbus Island Jerome

Clarenct
Ruggiero Donato

Anna
DiLorenzo Lawrence

Daniel
Gregory
Mary Anne

Stomboulis Christos
Helen

Walsh Ivan
Emma
Charlotte
Ann Marie

© DataEase International Ltd

172

ampm
Type
Time Function
Purpose
The ampm function evaluates a value expressed in the 24-hour time format (HH:MM:SS) and
returns the appropriate abbreviation AM (before noon), or PM (after noon).
Syntax
 ampm(TIME VALUE)

Returns:
A text value (either AM or PM).
Usage:
Time values from midnight (00:00:00) to (11:59:59) return AM. Time values from noon
(12:00:00) to (23:59:59) return PM.
Examples:

ampm(08: 15: 25)

Returns: AM
ampm(15: 30: 50)

Returns: PM

© DataEase International Ltd

173

and
Type
Logical Operator
Purpose
The and operator combines two or more sets of selection criteria.
Syntax
SELECTION CRITERIA 1 and SELECTION CRITERIA 2 [and SELECTION CRITERIA
3 . . .]

Returns
The values in records that satisfy all of the selection criteria statements.
Usage
The and operator requires that a record meet all the specified selection criteria to be
processed. The or operator requires that a record meet any of the specified criteria to be
processed. When selection criteria are combined with both the and and or operators in one
statement, the criteria must be enclosed in parentheses to clarify the meaning.
Example 1
 for MEMBERS with STATE = "NY"

 and TOTAL DUE > 500

 and LAST NAME between "A*" to "L*" ;

This statement tells DataEase to process only those MEMBERS records that contain NY in the
STATE field, a value greater than 500 in the TOTAL DUE field, and a LAST NAME value that
begins with any letter between A and L (inclusive). Only records that satisfy all three criteria
are processed.
Example 2
 for MEMBERS with (STATE = "NY" or STATE = "NJ")

and TOTAL DUE > 500 ;

This statement tells DataEase to process only those MEMBERS records that contain either NY
or NJ in the STATE field and a value greater than 500 in the TOTAL DUE field.
Example 3
for MEMBERS with STATE not = "NY" and STATE not = "NJ" ;

This statement tells DataEase to process all the members records except those that contain
either NY or NJ in the STATE field.
Again, only records that satisfy all sets of criteria are processed.

© DataEase International Ltd

174

any
Type
Relational Operator
Purpose
The any operator selects the first record in a related table that matches the current record
being processed. Since any returns the value from just the first related record, it is typically
used when you are accessing the one side of a many-to-one relationship.
Syntax
any TABLENAME | RELATIONSHIP

[named "UNIQUE RELATIONSHIP NAME"]

[with (selection criteria)] FIELDNAME ;|.

Returns:
The specified value from the first matching record in the related table. The type of value
returned is the same as that of the specified field.
Usage:
The any operator can be used to:
• Specify output items in a list records command.
• Specify selection criteria.
• Select related records from more than one table on each relationship level (i.e., Secondary

tables, Tertiary tables, etc.). See Primary Table for details on relationship levels.
Example
 for FAMILY MEMBERS ;

 list records

 any MEMBERS LAST NAME in order ;

 FIRST NAME;

 DATE OF BIRTH.

 end

This script tells DataEase: (1) Select all the FAMILY MEMBERS records, (2) for each record
selected from the FAMILY MEMBERS table, list the LAST NAME from the (one) related
MEMBERS record, and (3) list the first name and birthdate of each family member. The output,
sorted by LAST NAME, might look as follows:

Last Name First Name Date of Birth
Adams Will 09/23/60
Adams Becca 04/28/90
Adams Annalee 08/12/63
Albert Roland 12/07/48
Albert Rhonda 12/10/78
Albert Lori 06/27/82
Albert Kay. 11/03/50
...

© DataEase International Ltd

175

application status
Type
Control Command
Purpose
The application status command generates a report that displays the status of the Documents,
defined Imports, Records, or Servers included in the current application.
Syntax
application status [DOCUMENTS |IMPORTS |RECORDS | SERVERS]

Usage
When processing reaches an application status command, DataEase automatically locks the
current application. It then runs a pre-defined system report describing the current state of the
Documents, Imports, Records, or Servers in your application. Depending on which parameter
you specify, the status report includes one or more of the following:
• The name of each document.
• The DOS filename and file size of each document.
• The number of existing records in each table.
• The number of deleted records in each table.
• The name of each procedure.
• The DOS filename and file size of each procedure.
• The name of each import specification in the selected directory.
• The DOS filename and file size of each import specification.
• The name of each server linked to the current application and the name of the database(s)

you access on each server.

Example
record entry "MEMBERS" . application status records .

This script tells DataEase: (1) Display the MEMBERS form so the user can enter or update
member records, and (2) when the user closes the MEMBERS form, run the pre-defined
system report that displays information about the number of existing and deleted Records
stored in the application.
Note: If you specify the application status command without including any of the optional
parameters listed above, DataEase runs the status report that displays the status of Records
by default.

© DataEase International Ltd

176

asin (arcsine)
Type
Trigonometric Function
Purpose
The asin function calculates the arcsine of a numeric value. The result is an angle expressed
in radians between -p/2 to p/2.
Syntax
asin(NUMERIC VALUE)

Returns
A numeric value.
Usage
The numeric value in a Trigonometric function can be a constant value (as shown below), a
variable, a field value or an expression.
The valid range of the input value is -1 to 1.
Example
asin(1)
Returns:1.570796

asin(-0.50)
Returns: -0.5235988

© DataEase International Ltd

177

assign
Type
Procedural Command
Purpose
The optional assign command is used to give a value to a temporary or global variable. (You
must define a variable before you can assign it a value.) A variable is used to store a value,
such as a text string or a calculated result, that can change during the processing of a
procedure. By specifying the variable's name, the stored value can be used like any other
value in a script.
The status of a variable can be global (denoted by the keyword global) or temporary (denoted
by the keyword temp). A temporary variable maintains it's value only during the current
procedure. A global variable can pass its value from one procedure to another. To pass a
value from one procedure to another, the global variable must be defined identically in each
procedure.
Syntax
assign global|temp VARIABLE NAME := ASSIGNED VALUE .

Usage
The assign command is followed by:
• The status of the variable (global or temporary).
• The name of the variable (without quotation marks).
• The assignment operator.
• The value assigned to the variable.
• A period.

Example
 define temp "DISCOUNT" Number .

 for RESERVATIONS with TOTAL DUE > 2000 ;

 assign temp DISCOUNT := RESERVATIONS

 TOTAL DUE * 0.15 .

 modify records

 TOTAL DUE := TOTAL DUE - temp DISCOUNT .

 end

This script tells DataEase: (1) Create (define) a temporary variable called DISCOUNT to store
a number while processing the current script, (2) find all the RESERVATIONS records that
have a value greater than 2000 in the TOTAL DUE field, (3) give (assign) the DISCOUNT
variable a number value determined by multiplying the TOTAL DUE on each reservation by
15%, and (4) modify these RESERVATIONS records by subtracting the value of the
DISCOUNT variable from the value in the TOTAL DUE field.

© DataEase International Ltd

178

atan (arctangent)
Type
Trigonometric Function
Purpose
The atan function calculates the arctangent of a numeric value. The result is an angle
expressed in radians between -p/2 to p/2.
Syntax
atan(NUMERIC VALUE)

Returns
A numeric value.
Usage
The numeric value in a Trigonometric function can be a constant value (as shown below), a
variable, a field value or an expression.
Examples
atan(500.3)
Returns:1.56879753

atan(-359.4)
Returns:-1.5680139

© DataEase International Ltd

179

atan2 (arctangent 2)
Type
Trigonometric Function
Purpose
The atan2 function calculates the arctangent of Value 1 divided by Value 2
The result is an angle expressed in radians between -p and p.
Syntax
atan2(NUMERIC VALUE 1, NUMERIC VALUE 2)

Returns
A numeric value.
Usage
The numeric value in a Trigonometric function can be a constant value (as shown below), a
variable, a field value or an expression.
Examples
atan2(3,127)
Returns:0.02361766

atan2(1, 1)
Returns:0.7854

© DataEase International Ltd

180

backup db (backup database)
Type
Control Command
Purpose
The backup db command creates a backup copy of the current DataEase application. When
processing reaches a backup db command, DataEase automatically locks the current
application. It then displays a dialog asking you to specify the drive on which the backup copy
should be stored and how you want to handle any errors that occur during the backup.
Syntax
backup db .

Usage
When you backup a database using the backup db command, DataEase copies the database
using a special format; therefore, the backup copy can only be restored using the DataEase
restore db command or Application>>Utilities>>Restore.
When you backup and restore a database, all records that have been deleted since the last
backup and restore operation are permanently erased.
LAN
On a LAN (Local Area Network), if another user is currently using any resource required by the
backup db command, DataEase displays a Resource Conflict message. While this message is
displayed, DataEase automatically tries to execute the command at brief intervals.
When the required resource becomes available, DataEase automatically resumes processing
and executes the rest of the procedure.
Example

record entry "MEMBERS" .

run procedure "PRINT INVOICES" .

backup db .

This script tells DataEase: (1) Display the MEMBERS form so the user can enter new member
records, (2) when the user closes the MEMBERS form, run the procedure named PRINT
INVOICES, and (3) after running the PRINT INVOICES procedure, make a DataEase backup
copy of the current application.

© DataEase International Ltd

181

begin transaction
Type
Procedural Command
Purpose
The begin transaction command is used to mark the start of a unit of work called a transaction.
A transaction can be a whole procedure or any part of a procedure that enters or modifies data
(a procedure that includes an enter a record, modify records, or delete records command).
When processing reaches a begin transaction command, DataEase treats the statements that
follow as part of the same transaction until it reaches a commit, rollback, or another begin
transaction command. A procedure can contain any number of begin transaction commands.
Syntax
begin transaction

Usage
When a DQL Procedure is translated into SQL, DataEase inserts an implicit begin transaction
command at the beginning of the procedure. If you insert an explicit begin transaction
command outside a for loop or conditional statement, it is ignored when the procedure is
translated into SQL. If you insert an explicit begin transaction command inside a for loop or
conditional statement, it is interpreted as a savepoint when the procedure is translated into
SQL.
The commit command is used to end a transaction and save all the modified data. Once a
transaction is committed, it cannot be undone by a rollback command.
Example 1
 for RESERVATION AGENTS ;

 begin transaction

 for DAILY RESERVATIONS with (POSTED = NO) ;

 enter a record in YEARLY RESERVATIONS

 copy all from DAILY RESERVATIONS .

 modify records

 POSTED = YES .

 end

 if sum of YEARLY RESERVATIONS AMOUNT > 80000

 then

 modify records

 CHRISTMAS BONUS := YES .

 end

 commit .

 end

© DataEase International Ltd

182

The procedure in Example 1 contains three operations that are treated as a single transaction.
The first operation enters a record in the YEARLY RESERVATIONS table using the values in
the DAILY RESERVATIONS table. The second operation modifies the POSTED field in the
DAILY RESERVATIONS table to indicate that the record was posted to the YEARLY
RESERVATIONS table. The third operation modifies the records in the RESERVATION
AGENTS table whose yearly sales total is greater than $80,000.00. When processing reaches
the commit command, the updates to the parent record and both child records are saved
together. If any part of the transaction fails, the entire transaction is rolled back.
Example 2
 for RESERVATIONS ;

 begin transaction

modify records in MEMBERS

 ACCOUNT BALANCE := ACCOUNT BALANCE +

 RESERVATIONS TOTALDUE .

 modify records in RESERVATION AGENTS

 DAILY TOTAL := DAILYTOTAL +

 RESERVATIONS TOTALDUE .

 modify records in CLUB ROOMS

 VACANCIES := VACANCIES -

 RESERVATIONS ROOMSREQUIRED .

 modify records

 POSTED:= YES .

 commit .

 if current SQLCODE not = 0 then

 list records

 RESERVATION ID .

 end

 end

The procedure in Example 2 contains four modify operations that are treated as a single
transaction. The first operation updates a record in the MEMBERS table using the value in the
TOTAL DUE field in the RESERVATIONS table. The second operation updates a record in the
RESERVATION AGENTS table using the value in the TOTAL DUE field in the
RESERVATIONS table. The third operation updates a record in the CLUB ROOMS table using
the value in the ROOMS REQUIRED field in the RESERVATIONS table. The fourth operation
updates the current record by setting the POSTED field to YES.
When processing reaches the commit command, all four of the modifications are committed
together. If any part of the transaction fails, the entire transaction (all four modifications) is
rolled back. The current SQLCODE variable is set to zero if the commit is successful and to an
SQL engine-specific error code if the commit fails. If DataEase is unable to commit all the
modifications for a specific order, the order number is listed in the procedure output.

© DataEase International Ltd

183

between
Type
Comparison Operator
Purpose
The between operator is used to indicate that a value falls within a specified range. It specifies
that the test value is greater than or equal to Value 1 and less than or equal to Value2.
Syntax
TEST VALUE between VALUE 1 to VALUE 2

Returns
All records for which the comparison is true.
Example
 for MEMBERS with TOTAL DUE between 0 to 499 ;

 list records

 LAST NAME ;

 MEMBER ID .

 end

This statement selects MEMBERS records that have a value between 0 and 499 (inclusive) in
the TOTAL DUE field.

© DataEase International Ltd

184

blank
Purpose
The blank keyword is used to assign a null value to a field or variable, or to compare a null
value to the value in a field or variable.
Syntax
blank

Usage
A blank value is a null value, not a zero. When statistics are calculated on a field, blank values
are not included in the calculation. Zero field values are included when generating statistics.
Field or variable values can be compared to blank, and blank can be assigned as a value to
any field or variable.
Example

for MEMBERS with TOTAL DUE = blank ;

 delete records .

end

This script tells DataEase: Delete the MEMBERS records that have a blank value in the
TOTAL DUE field. It might be used to delete inactive MEMBERS records.

© DataEase International Ltd

185

break
Type
Procedural Command
Purpose
The break command is used to immediately stop the action of a for or while command and
continue processing the rest of the procedure.
When processing reaches a break command, DataEase immediately abandons the current
action. It resumes processing the procedure with the first action listed after the corresponding
end command.
Syntax

ACTION 1 .

ACTION 2 .

ACTION 3 .

break .

end

NEXT COMMAND

Usage
The break command is always followed by a period.
Example
 for MEMBERS ;

 list records

 TOTAL DUE in reverse ;

 LAST NAME .

 if current item number > 100 then

 break .

end

 end

 for RESERVATIONS ;

 delete records with DATE < 01/01/90 .

 end

This script tells DataEase: (1) List each member's TOTAL DUE and LAST NAME, arranging
the output from highest to lowest TOTALDUE value, and (2) when one hundred MEMBERS
records have been processed, stop listing records and proceed to the next command (delete
RESERVATIONS records with DATE before January 1, 1990).

© DataEase International Ltd

186

call menu
Type
Control Command
Purpose
The call menu command opens the specified menu document.
Syntax
call menu "MENU NAME" .

Usage
The call menu command is used to display a user-defined menu at any point during a Control
Procedure.
When the menu is displayed, you can make selections from it and perform the associated
DataEase operations normally.
When you close the menu by double-clicking its Control menu box (or by clicking on a custom
button designed for this purpose), the Control Procedure resumes with the action following the
call menu command.
User-defined menus are called by the name specified when the menu document was created.
In a call menu command, the menu name must be enclosed in quotation marks unless it is
specified as a variable.
Example

record entry "MEMBERS" .

run procedure "PRINT INVOICES" .

call menu "MAIN MENU" .

backup db .

This script tells DataEase: (1) Display the MEMBERS form so the user can enter new records,
when the user closes the MEMBERS form, (2) run the PRINT INVOICES Procedure, when the
procedure finishes processing, (3) display the MAIN MENU document, and when the operator
closes the menu, (4) backup the application.

© DataEase International Ltd

187

call program
Type
Control Command
Purpose
The call program command runs the specified DOS program.
Syntax
call program "PROGRAM NAME [OPTIONAL ARGUMENT]" .

Usage
The call program command is used to call and run another program at any point during a
Control Procedure.
The called program can be any .BAT, .PIF (shortcut), .COM, or .EXE program. The command
must specify the drive and directory on which the called program is stored if it is not stored in
the current directory.
The command can include optional arguments. The command can be a constant (Example 1)
or an expression involving functions and variables (Example 2). The program name and
arguments must be enclosed in quotation marks unless specified as a variable.
When the called program has been executed, DataEase resumes processing the Control
Procedure with the action following the call program command.
Example 1

run procedure "MONTHLY RESERVATIONS" .

call program "C: \LOTUS\123W.EXE RESVDATA.WK3" .

This script tells DataEase: (1) Run the predefined MONTHLY SALES Procedure which saves a
summary of the monthly reservations to a disk file, and (2) call the Lotus 1-2-3 program and
load the file created by the previous procedure for further processing.
Example 2

define temp "CHART" TEXT .

assign temp CHART := "RESVDATA.WK3" .

define temp "PROG" TEXT .

assign temp PROG := "C: \LOTUS\123W.EXE" .

run procedure "MONTHLY SALES" .

call program jointext (temp PROG,temp CHART) .

This script does exactly the same thing as the simpler one above, but shows the proper use of
an expression as an argument for the call program command.
The call program command requires a space between the program name and any optional
argument. Because the jointext function does not automatically insert a space between the
PROG and CHART variables in the example above, a blank space is included inside the
quotation marks after the program name, 123W.EXE, stored in the PROG variable.

Note: The arguments of the jointext function (PROG, CHART) are not enclosed in quotes
because they are variables.

© DataEase International Ltd

188

case
Type
Procedural Command
Purpose
The case command functions like an if-then-else statement with multiple ifs. It tells DataEase
to compare an expression to a series of values and execute a different action (or group of
actions) based on which comparison is true.
When processing reaches a case command, DataEase compares the expression that follows
the case command to each of the statements specified by the keyword value.
If the first comparison is true, DataEase executes all the actions between that value statement
and the next value statement.
If the first comparison is not true, the case expression is compared to the next value statement.
This comparing of values continues in top-to-bottom sequence from one value statement to the
next until a true comparison is made.
If none of the specified value comparisons are true, DataEase executes the actions specified
after the keyword others. If the others keyword is not present, DataEase executes none of the
specified actions. It continues processing the remainder of the script.
As soon as the actions following any single statement are executed, processing passes to the
first action following the end command for the case structure.
Syntax
case (EXPRESSION)

 value COMPARISON 1 :

ACTION SERIES 1 .

[value COMPARISON 2 :

ACTION SERIES 2 .]

[value COMPARISON 3 :

ACTION SERIES 3 .]

[others :

DEFAULT ACTION SERIES .]

end

Usage
The case command requires a case expression, at least one value statement, and an end
command. Subsequent value statements, actions, and the others keyword are optional. If
others is used, it must follow the last value statement.
The case expression must be enclosed in parentheses. It can be a field, a variable, or any
other expression except a boolean expression (true or false). Each comparison value can be a
constant, a variable, an expression, or a range of values.
An action can specify any valid procedure command including another if, while, or case
command. Each nested command must be completed before processing passes to the first
action after the end command (see the nested actions entry in this Lexicon).

© DataEase International Ltd

189

When case commands are nested, the first end corresponds to the last preceding case, and
each case command must be matched with a corresponding end command. This rule applies
to all nested Procedural commands (including case, for, if, and while).
When you select case from the command pick list, DataEase automatically enters the opening
((parenthesis).
Example

value "FRANK" :

 call menu "MAIN MENU" .

 value "TOM" :

 call menu "CLUB ADMINISTRATION" .

 value "CAROL" :

 run procedure "MAINTENANCE" .

 others:

 record entry "MEMBERS" .

 end

This script tells DataEase: (1) If the current user is Frank, display the MAIN MENU document,
(2) if the current user is Tom, display the CLUB ADMINISTRATION menu document, (3) if the
current user is Carol, run the MAINTENANCE procedure, and (4) if the current user is anyone
other than Frank, Tom, or Carol, display the MEMBERS form.

© DataEase International Ltd

190

ceil
Type
Math Function
Purpose
The ceil function rounds up a numeric value to the next integer.
Syntax
ceil(NUMERIC VALUE)

Returns
An integer value.
Usage
The numeric value in a Math function can be a constant value (as shown below), a variable, a
field value or an expression.
Examples

ceil(5.000)
Returns:5

ceil(5.001)
Returns:6

© DataEase International Ltd

191

comment
Type
Symbol
Purpose
The - - (comment) symbol is used to insert annotative comments in a script. Comments have
no effect during the execution of the procedure.
Syntax
-- COMMENT TEXT

Usage
DataEase treats each character between the double dash symbol and the end of the line as
part of the comment.
To continue a comment on more than one line, use the double dash symbol at the beginning of
each line.
Example
for MEMBERS with TOTAL DUE >= 500 ;

 list records

 LAST NAME ;

 TOTAL DUE .

 end -- THIS QUERY LISTS THE LARGEST FAMILIES.

 -- IT SHOULD BE PRINTED ON THE TENTH DAY

 -- OF EACH MONTH.

This script statement selects MEMBERS records that have a value greater than or equal to
500 in the TOTAL DUE field and lists the members' LAST NAME and TOTAL DUE values. The
comment at the end of the script has no effect on processing. DataEase ignores text that
follows the double dash comment symbol.

© DataEase International Ltd

192

commit
Type
Procedural Command
Purpose
The commit command is used to mark the end of a transaction. A procedure can contain any
number of commit commands.
Syntax
commit .

A transaction can be all or any part of a DQL Procedure that changes data and must be
processed as a single unit to maintain integrity (such as a procedure that transfers money from
a customer's savings account into his/her checking account). When accessing data in an SQL
database, DataEase usually treats a DQL Procedure as a single transaction by default and
commits all the changes made to the data simultaneously at the end of the procedure. When
you're running a shared application on a network, treating a whole procedure as a single
transaction may reduce concurrency. For this reason, DataEase provides the tran off
command (to turn transactions off) and the commit command to divide a procedure into
several smaller transactions.
Usage
The commit command is used with the begin transaction command to divide a procedure into
several transactions. By defining separate transactions within a DQL Procedure, it's possible to
rollback any partially completed changes that leave data in an inconsistent state and to recover
from system or user-generated errors.
A commit command can be used anywhere in a procedure. When DataEase converts a script
into SQL, the position of a commit command in the script determines how DataEase processes
it. If the commit command is outside a for loop or conditional statement, DataEase translates
the DQL commit into an SQL COMMIT command (this commits all changes made to the data
since the last commit or begin transaction command was processed). If the commit is inside a
for loop or conditional statement, DataEase inserts the SQL SAVEPOINT command.
The commit command is often followed by a conditional statement that uses the current status,
current SQLCODE, or current SQLCOUNT variable to determine if the preceding transaction
was committed successfully (see Example 2).
Example 1
 for RESERVATIONS ;

 begin transaction

 modify records

 TOTAL DUE := TOTAL DUE - AMOUNT PAID .

 commit .

 If DEPARTURE DATE < current date - 90 then

 begin transaction

 modify records

 TOTAL DUE := TOTAL DUE * LATE PENALTY .

 commit .

 end

 end

© DataEase International Ltd

193

This procedure contains two transactions. The first transaction modifies the RESERVATIONS
records by subtracting the AMOUNT PAID from the TOTAL DUE. The second transaction
modifies the records of past due accounts (that is, reservations that are not paid 90 days after
the RESERVATION DATE) by multiplying the TOTAL DUE by a LATE PENALTY factor. Each
transaction is committed as it is completed. The commit commands tell DataEase to post the
changes in the appropriate table on the server and then continue processing the procedure.
Example 2
 for RESERVATIONS ;

 begin transaction

 modify records in CLUB ROOMS with

 (CLUB ID = RESERVATIONS CLUB ID and

 RESERVATION DATE = RESERVATIONS RESERVATIONDATE)

 VACANCIES := VACANCIES - ROOMSREQUESTED .

 commit .

 if current SQLCODE not = 0 then

 message " Last transaction was unsuccessful.|

 Not enough rooms available.|

 Changes have been rolled back . " window.

 else begin transaction

 modify records

 CONFIRMED := YES .

 commit .

 end

 end

This procedure uses the current SQLCODE variable to verify that the first transaction was
successfully committed before beginning the second transaction. If the current SQLCODE is
not equal to zero (i.e., the first transaction was not successfully committed), the SQL engine
automatically rolls back the changes and displays a message that notifies the user that the
transaction failed. If the current SQLCODE is zero, the first transaction is committed and
DataEase continues processing.

© DataEase International Ltd

194

Comparison Operators
Type
Operator
Purpose
Comparison Operators are used to compare one value to another in record selection criteria,
math formulas, and in other text and numeric expressions.
The DQL uses seven Comparison Operators:
• = Both sides of the comparison have the same value.
• < The value on the left side of the comparison is less than the value on the right side.
• > The value on the left side of the comparison is greater than the value on the right side.
• <= The value on the left side is less than or equal to the value on the right side.
• >= The value on the left side is greater than or equal to the value on the right side.
• between…..to The value lies within the specified range (inclusive).
• not Reverses the meaning of the operator that immediately follows it.

Examples
 for MEMBERS with TOTAL DUE > 500

 and STATE not = " NY " ;

 for RESERVATIONS with RESERVATIONDATE between 06/01/95

 to 06/31/95 ;

© DataEase International Ltd

195

Conditional Statistical Operators
Type
Operator
Purpose
Conditional Statistical Operators generate statistical information about specific conditions that
occur in a set of records.
The DQL uses three Conditional Statistical Operators: item, count, and percent.
• item returns a YES or NO answer indicating if the comparison is true or false.
• count returns the number of true responses within all the specified records as well as

specified groups.
• percent returns the percentage of true responses (the number of true responses divided by

the total number of records processed, multiplied by 100). percent also works at the group
level.

Usage
In a script, the Conditional Statistical Operator is inserted after a list item that is compared to a
specified value. The operator is separated from the comparison by a colon.
Example
 for MEMBERS ;

 list records

 LAST NAME in order ;

 TOTAL DUE ;

 TOTAL DUE > 100 : item count percent .

 end

This script tells DataEase: (1) Process all the MEMBERS records, (2) list each member's
LAST NAME and TOTAL DUE, (3) for each member, display a YES or NO answer indicating if
the member's TOTAL DUE is greater than $100, (4) display the total number of members
whose TOTAL DUE is greater than $100, and (5) display the number of members that have a
TOTALDUE greater than $100 as a percentage of all the members.
The output from this script arranged in alphabetical order by LAST NAME might look as
follows:

Last Name Total Due Total over $100
Adams 85.00 NO
Albert 120.00 YES
Andersen 120.00 YES
Anderson 70.00 NO
Archer 115.00 YES
Baldwin 100.00 YES
Beauchamp 35.00 NO
Beauchamp 85.00 NO
Beecher 85.00 NO
Bennington 135.00 YES

© DataEase International Ltd

196

Bickford 135.00 YES
Birnbaum 65.00 NO
Blake 85.00 NO
Borusiewicz 100.00 NO
...

Count: 44
Percent: 23%

© DataEase International Ltd

197

Constant Value
Type
Concept
Purpose
A constant value is a value that does not change while a procedure is being processed (in
contrast to a variable, a value that can change during processing).
Constant values are used in selection criteria comparisons, math formulas, proper names, and
other text and numeric expressions.
Usage
In a script, a constant value can be used wherever its value type is allowed. The value types of
constants are the same as the basic field value types: text, number, numeric string, date, time,
and dollar.
The format for typing constant values is as follows:
• Enclose Text constants in double quotes ("TEXT").
• Use slashes in Date constants (01/01/2001).
• Use colons in Time constants (09:30:00).
• Do not type formatting characters in numeric strings.
• Do not type commas in Number constants.

Example
for MEMBERS with LAST NAME = " SPENCER "

 and ZIP CODE > 90000 ;

In this query statement, both the last name SPENCER and the zip code 90000 are constant
values.

© DataEase International Ltd

198

Control Procedure
Type
Concept
Purpose
A Control procedure is a procedure that lets you link other procedures together with or without
conditional processing actions specified by Procedural commands.
A Control procedure can link any number of procedures together and can automatically initiate
several actions, including run procedure, backup db (database), install application, etc.
Usage
A Control procedure is used primarily to link Processing procedures together. It can include
any combination of Control commands, Processing commands, and Procedural commands.
For a full explanation of any of the DQL commands, see the individual command entry in this
lexicon.
Example
 if current user name = "PAUL" then

 call menu "RECREATIONAL ADMIN" .

 run procedure "MAILING LIST" .

 else

 call menu "MAIN MENU" .

 end

This Control procedure tells DataEase: If the current user is Paul, (1) Display the
RECREATIONAL ADMIN menu, (2) run the procedure that generates an up-to-date mailing
list, and (3) if the current user is not Paul, display the main menu.

© DataEase International Ltd

199

copy all from
Type
Processing Command
Purpose
The copy all from command copies values in identically named fields from one table to
another.
Syntax
copy all from TABLENAME|data-entry ;|.

Usage
The copy all from statement must specify a Source table and must be immediately preceded
by a modify records or enter a record command. The Source table can be any relationship
previously specified in the script. The procedure's Data-entry form can also be used as the
Source.
The Target table is specified at the end of the preceding modify records or enter a record
command. The Target table can be any table you specify; the default is the Primary table
specified in the most recent for statement. Data is copied into each Target field from the
identically named field in the Source table.
When you use the copy all from command, data is transferred only between fields with the
same fieldname. Non-matching fields are ignored.
Example
Assume we've defined a target form called CATALOG LIST. This form contains only those
members who receive a special Christmas promotional catalog.

 for MEMBERS with

 any RESERVATIONS TOTAL DUE > 1500 ;

 enter a record in CATALOG MEMBERS

 copy all from MEMBERS .

 end

This script tells DataEase: (1) Select all the MEMBERS records that have any related
RESERVATION record with a TOTAL DUE greater than $1500, and (2) for each MEMBERS
record selected, enter a record in the CATALOG MEMBERS table and copy all the information
from the source MEMBERS record into the target CATALOG MEMBERS record, based on
matching field names.

© DataEase International Ltd

200

cos (cosine)
Type
Trigonometric Function
Purpose
The cos function calculates the cosine of an angle expressed in radians. The value returned
ranges between -1 and 1.
Syntax
cos(NUMERIC VALUE)

Returns
A numeric value.
Usage
The numeric value in a Trigonometric function can be a constant value (as shown below), a
variable, a field value or an expression.
Examples
cos(3.1415928)

Returns: -1

cos(-22)

Returns: .9271838

cosh (hyperbolic cosine)
Type
Trigonometric Function
Purpose
The cosh function calculates the hyperbolic cosine of an angle expressed in radians.
Syntax
cosh(NUMERIC VALUE)

Usage
The numeric value in a Trigonometric function can be a constant value (as shown below), a
variable, a field value or an expression.
Returns
A numeric value.
Examples
cosh(2.34)

Returns: 5.23878166

cosh(-5.4)

Returns: 110.70547

© DataEase International Ltd

201

count
Type
Conditional Statistical Operator
Purpose
The count operator counts the number of records in the table being processed. It can also be
used to count the number of times a condition specified by a comparison of two values is true.
The result usually appears as a statistic in the summary area at the end of a report or group.
Syntax
CONDITION : count [other statistical operators];|.

Usage
To count all the records that meet a specified condition, enter :count after the condition as
shown in Example 1. . When applied to a field, it counts how many times that field has a value.
To count all the records processed by a script, use a statement that is true for every record,
such as "A" = "A". This method is shown in Example 2.
Example 1
 for MEMBERS with STATE = "NJ" ;

 list records

 LAST NAME in order ;

 TOTAL DUE ;

 TOTAL DUE > 40 : count .

 end

This script tells DataEase: (1) List the MEMBERS records showing each member's LAST
NAME and TOTAL DUE, and (2) count the number of members who have an TOTAL DUE
greater than $40. The output from this script might look as follows:

Last Name Total Due
Beauchamp 35.00
Carley 50.00
Fairchild 50.00
Giovanelli 70.00
Morrison 100.00
Parker 105.00

Count (> 40): 5

© DataEase International Ltd

202

Example 2
for MEMBERS with STATE = "NJ" and TOTAL DUE > 40 ;

 list records

 LAST NAME in order ;

 TOTAL DUE ;

 "A" = "A" : count .

end

Example 2 produces output identical to Example 1, except that Beauchamp is omitted because
her TOTAL DUE is less than $40. The count statistic is again 5, but in this case it represents
all the records that are processed (because all records processed satisfy the count condition).

© DataEase International Ltd

203

count of
Type
Relational Statistical Operator
Purpose
The count of operator counts how many records in a related table match the specified
selection criteria. The result can appear as a list item in the detail area of a report or as a
statistic in the summary area at the end of a report.
There's an important difference between the conditional statistical operator count and the
relational statistical operator count of. count finds the number of records that satisfy a specified
condition among the records being processed. count of calculates the number of matching
records related to the records being processed by the script.
Syntax
count of TABLENAME|RELATIONSHIP

[named "UNIQUE RELATIONSHIP NAME"]

[with (selection criteria)] ;|.

Example
 for MEMBERS with STATE = "CA" ;

 list records

 LASTNAME in order ;

 TOTAL DUE ;

 TOTAL DUE > 100 : item count ;

 count of RESERVATIONS with (TOTAL DUE > 1500) .

 end

This script tells DataEase: (1) Process all the MEMBERS records of members living in
California, (2) list the LAST NAME and TOTAL DUE field from each MEMBERS record, (3) for
each member, display a YES or NO answer indicating if the member's TOTAL DUE is greater
than $100, (4) count the total number of members whose TOTAL DUE is greater than $100
and display this total as a statistic at the end of the report output (this is generated by the count
operator), and (5) count the number of related RESERVATIONS records that have a TOTAL
DUE greater than $1500, and display this number as a list item for each member (this is
generated by the count of operator).

© DataEase International Ltd

204

count of
This script uses data from two different fields named TOTAL DUE, one in the MEMBERS table
(containing membership fee data), and the other from the RESERVATIONS table (containing
reservation price data).
The output from this script might look as follows:

Last Name Total Due Total Due > 100

Count of
RESERVATIONS with
TOTAL DUE > 1500

Broadrick $100.00 NO 1
Gauthier $140.00 YES 1
Goetz $70.00 NO 1
Jackson $35.00 NO 0
Kowalski $70.00 NO 1
Manzi $100.00 NO 1
McKenna $85.00 NO 1
Schwartz $70.00 NO 1
Steinberg $120.00 YES 2
Sullivan $70.00 NO 1
Young $105.00 YES 1

Number of MEMBERS with TOTAL DUE > 100 : 3

In the output above, the count of totals for each member are displayed as list items in the
Report Detail Area while the count total is displayed at the bottom of the output in the Report
Summary Area. This is accomplished by placing the count of total on the Record object in the
procedure layout and the count total on the Form object.

© DataEase International Ltd

205

current
See also commit, data-entry, exec SQL, global, input using, temp.

Type
Variable component
Purpose
The current keyword lets you access any of the eleven system defined variables summarized
below and on the following page.

Variables Used with the current Keyword

current date The date recorded by the system clock (a date value). The year part is a two
digit number.

Current extended date The date recorded by the system clock (a date value). The year part is a four
digit number.

current time The time recorded by the system dock (a time value).

current page number In DataEase, this command is replaced by the Page Number application
variable. current page number is included only to maintain compatibility with
applications created in character-based versions of DataEase. See DG 6 for
information on creating application variables.

current Item number The number of the current record. Records are automatically counted as they
are processed by the procedure (a numeric value).

current user name The name used to sign onto the application (a text value).

current user level The current user's security level (a numeric value from 1 to 7).

current computername The name of the workstation running the procedure when using DataEase in a
multi-user environment (a text value set by the DENAME environment
variable).

current status The value of the processing action selected following the DQL input using
command or the status of the last DQL command that modifies data. By
testing the current status variable, you can control subsequent processing
following an input using command or check for errors following a DQL
command that modifies data. See the input using command for an example of
current status used with the input using command.

The following variables are used only in applications that access data on an SQL database:

current SQLCODE The SQL Error Code number generated by the server when an error occurs
during the processing of an SQL statement (e.g., CREATE, INSERT,
UPDATE, or DELETE). current SQLCODE is set to zero if the last SQL
statement is processed without error. Server-specific error codes are

© DataEase International Ltd

206

explained in your database engine documentation. See the commit and exec
SQL commands for examples.

current SQLCOUNT The number of rows processed by the procedure. See the exec SQL
command for an example.

current SQLMSGTXT The SQL Message Text generated by the server, in addition to any errors and
warnings (a server can return a current SQLCODE value of zero and still
generate SQL Message Text). DataEase displays the first 50 characters of the
message. Server-specific messages are explained in your database engine
documentation. See the exec SQL command for an example.

Note: See input using for examples demonstrating the use of the current status variable. See
commit for examples that use current SQLCODE and current SQLCOUNT. See exec SQL
for examples using current SQLCODE, current SQLCOUNT, and current SQLMSGTXT.

When current status is used with the input using command, it returns a numeric value from 1 to
4 depending on which menu selection (or icon) the user chooses after entering data.
When current status is used with an enter a record, modify records, delete records, or commit
command, it returns 0 (zero) if the command is processed successfully and -1 (negative 1) if
the command fails.
Syntax
current variable name

Example
list records

 current date ;

 current user name .

 for MEMBERS with TOTAL DUE > 175 ;

 list records

 LAST NAME in order ;

 TOTAL DUE ;

 current item number end

This script tells DataEase: (1) Select the MEMBERS records that have a TOTAL DUE value
greater than $175, (2) list the LAST NAME and TOTAL DUE values and current item number
(record number) from each record that is processed, and (3) list the current date (today's date)
and the current user name (the name of the user who generated the report).
The output from this script might looks as follows:

Report generated by: George McGrath Date: 01/20/99
Item # Last Name Total Due
1 Perrault 215.00
2 Christino 280.00
3 Stafford 185.00
4 Strachan 205.00

© DataEase International Ltd

207

data-entry
Type
Keyword
Purpose
The data-entry keyword identifies the Data-entry form as the source of the specified value.
Syntax
data-entry FIELDNAME

Usage
A Data-entry form is a form used to collect data and processing specifications from a user at
the beginning of a procedure. Values retrieved from a Data-entry form are used in a script
exactly like any other value or expression. The keyword data-entry is used in place of a table
name when specifying a value entered in a Data-entry form.
Example
 for MEMBERS with MEMBERID = data-entry MEMBERID ;

 modify records

 copy all from data-entry

 ADDRESS := data-entry NEW ADDRESS .

 end

This script might be used to post address changes into the MEMBERS table. It tells DataEase:
(1) Find the MEMBERS record that has the same MEMBER ID as the MEMBER ID specified
on the Data-entry form, and (2) modify the MEMBERS record by copying the value from the
NEW ADDRESS field in the Data-entry form to the ADDRESS field in the MEMBERS table.

© DataEase International Ltd

208

date
Type
Date Function
Purpose
The date function constructs a date value from three separate numeric values.
Syntax
date(MONTH, DAY, YEAR)

…where;
MONTH is the number of the month (1-12),
DAY is the day of month (1-31), and
YEAR is the last two digits of year, or the full four digit year, depending on the type of date
field.

Returns
A date value in the Short Date format specified in the Windows Control Panel. For example, if
you specify the United States default date format in Control Panel, the date value is returned in
the order MM/DD/YY.
Usage
If any input value is invalid (e.g., month > 12 or day > 31), DataEase calculates a future date,
for example, 6,45,95 becomes 07/15/95
Decimal values are automatically truncated.
Example 1
date(7,1,99)

Returns:07/01/99

Example 2
FIRSTDAY := date (month (TODAY) , 1, year (TODAY)) ;

LASTDAY := date ((month (TODAY) + 1) , 1, year (TODAY)) - 1
.

This portion of a script uses a variable named TODAY (which holds the current date) and two
other date functions, month and year, to find the first and last days of the current month.
The result, if the current date is July 4th, 1995, is: FIRSTDAY = 07/01/2001 LASTDAY =
07/31/01 This routine is accurate for any date.

Note: If your system is configured for an international date format other than United States,
the date value may be returned in the order DD/MM/YY or YY/MM/DD. See your Microsoft
Windows documentation to find the date format that corresponds to your Windows Control
Panel country setting.
Regardless of how your system is configured, the three numerical values this function requires
are always input in the order MONTH, DAY, YEAR.

© DataEase International Ltd

209

day
Type
Date Function
Purpose
The day function extracts the day of the month (1-31) from a date value.
Syntax
day(DATE VALUE)

Returns
An integer value between 1 and 31
The date format selected in Windows Control Panel changes the date sequence but does not
affect which value is returned by a Date function.
Examples
day(12/31/01)

Returns:31 (United States format)

day(31/12/01)

Returns:31 (Australian, English Canadian, South American, most European formats)

day(01/12/31)

Returns:31 (Austrian, French Canadian, Taiwanese, South Korean, some European formats)

© DataEase International Ltd

210

db status (database status)
Type
Control Command
Purpose
The db status command generates a report that displays the status of the current database. In
DataEase, this command is replaced by the application status records command and is
included to maintain compatibility with applications created in the character-based version of
DataEase. If you run a procedure that contains the db status command, DataEase executes
the application status report that displays information about the records that exist in the
application.

© DataEase International Ltd

211

define
Type
Procedural Command
Purpose
The define command is used to create a global or temporary variable. A variable is used to
store a value such as a text string or a calculated result that can change during the processing
of a script. By specifying the variable's name, the stored value can be used like any other
value in a script.
The status of a variable can be global (denoted by the keyword global) or temporary (denoted
by the keyword temp). A temporary variable maintains its value only during the current script. A
global variable can pass its value from one script to another when several scripts are
integrated within a Control Procedure. To pass a value from one script to another, a variable
must be defined identically in each script.
Syntax
define [global|temp] "VARIABLE NAME" TYPE [LENGTH] .

Usage
• The define command is followed by:
• The status of the variable (global or temporary).
• The name of the variable (enclosed in quotation marks).
• The type of the variable (any field type except Choice, currency, or Yes/No, Sequenced ID,

or Memo).
• The length of the variable (optional, see below).
• A period. The define command requires a concluding period.

If you do not specify temp or global in the define statement, DataEase automatically creates a
temporary variable.
The length specifies the number of characters for Text and Numeric String variables. The
default length is 25; you can specify any length up to 255 characters. Number variables are
always 14 digits long. Date and Time variables are 8 characters long. The default length is
used if you do not specify a length in the define command.

Note: You can define a variable as any field type except Choice, Dollar, or Yes/No.

© DataEase International Ltd

212

Example

 define temp "DISCOUNT" Number .

 for RESERVATIONS with TOTAL DUE > 1500 ;

 assign temp DISCOUNT :=

 RESERVATIONS TOTAL DUE * 0.15 .

 modify records

 TOTALDUE := TOTAL DUE - temp DISCOUNT .

 end

This script tells DataEase: (1) Create (define) a temporary variable called DISCOUNT in which
to store a number while processing the current script, (2) find all the RESERVATIONS records
that have a value greater than 1500 in the TOTAL DUE field, (3) give (assign) the DISCOUNT
variable a value determined by multiplying the TOTAL DUE on each invoice by 15%, and (4)
modify these RESERVATIONS records by subtracting the value of the DISCOUNT variable
from the value in the TOTAL DUE field.

© DataEase International Ltd

213

delete records
Type
Processing Command
Purpose
The delete records command deletes records in the specified table.
Syntax
delete records in FORMNAME | RELATIONSHIP

[named "UNIQUE RELATIONSHIP NAME"]

[with (selection criteria)] .

Usage
You must end the delete records command with a period (.). When you delete records in the
Primary table, the keyword in is omitted (see Example 1).
Example 1
 for members with (highest of

 RESERVATIONS DATE < 01/01/99) ;

 delete records .

 end

This script deletes records in the Primary table (MEMBERS) whose most recent invoice (in the
related RESERVATIONS table) is dated prior to January 1st, 1994.
When you delete records in a table other than the Primary table, the keyword in precedes the
table name (as shown in Example 2).
Example 2

for MEMBERS ;

 delete records in RESERVATIONS named " OUTDATED "

 with RESERVATIONS DATE < 01/01/99) .

 end

This script deletes records in the related (RESERVATIONS) table that are dated prior to
January 1st, 1999.
The named operator is used to assign a unique relationship name to the group of outdated
records in the related table.
Note: The delete records command marks records as deleted, but does not physically delete
them from disk until the specified table is reorganized. If records are frequently deleted,
reorganizing the table will increase performance.

© DataEase International Ltd

214

do
Type
Command component
Purpose
The do keyword is a component of the while command syntax.
When processing reaches a while command, DataEase evaluates the condition that follows
the keyword while. If the specified condition is true, DataEase executes all the actions that
follow the keyword do until it reaches the corresponding end command. DataEase then
reevalutes the original condition. If the condition is still true, DataEase executes the do action
series again. If the condition is false, processing passes to the first action following the end
command for the while statement.
Syntax
while CONDITION do

ACTION 1 .

[ACTION 2 . ACTION 3 .]

end

Example
 define temp "CRUISE TICKET NUM" Number .

 assign temp CRUISE TICKET NUM := 0 .

 while temp CRUISE TICKET NUM <=1000 do

 temp CRUISE TICKET NUM := temp CRUISE TICKET NUM + 1 .

 list records

 jointext ("Cruise Boarding Pass No. " ,

 temp CRUISE TICKET NUM) .

 end

This script tells DataEase: (1) Create (define) a temporary variable called CRUISE TICKET
NUM, (2) give (assign) an initial value of 0 to the CRUISE TICKET NUM variable, (3) print a
series of labels joining the words Cruise Boarding Pass No. to the number that is the current
value of the CRUISE TICKET NUM variable, (4) while printing the labels, increment the
variable by one each time a new label is printed, and (5) when the value of the variable
exceeds 1000, stop printing labels.
The while command tells DataEase to reevaluate the value of the variable each time it prints a
label. As long as that value is less than or equal to 1000, DataEase prints another label. When
the value of the variable exceeds 1000, DataEase stops performing the action following the do
keyword.

© DataEase International Ltd

215

else
Type
Procedural Command component
Purpose
The else keyword is a component of the if command syntax.
The if command executes one of two different actions (or series of actions) based on whether
the specified condition is true or false. When processing reaches an if command, DataEase
evaluates the condition that follows the keyword if. If the specified condition is true, DataEase
executes all the actions which follow the keyword then until processing reaches the
corresponding end or else command. If the specified condition is false, DataEase executes all
the actions that follow the keyword else until processing reaches the corresponding end
command. If there is no else, DataEase jumps directly to the statement following the end
command.
Syntax
if CONDITION then

ACTION 1 .

[ACTION 2 .

 ACTION 3 .]

[else

ACTION 1 .

[ACTION 2 .

ACTION 3 .]]

end

Example
 for MEMBERS ;

 if highest of RESERVATIONS DATE < 01/01/99 then

 delete records

 else

 delete records in RESERVATIONS

 with (DATE < 01/01/99) .

 end

 end

This script tells DataEase: (1) For each MEMBERS record, find the most recently dated record
in the related RESERVATIONS table, (2) if the most recent reservation is dated before
January 1st, 1999, delete the MEMBERS record, and (3) if a member's most recent
reservation is dated on or after January 1st, 1999, delete all of that member's
RESERVATIONS records dated prior to 1999.
Note that the first end marks the end of the if command that selects which records to delete.
The second end marks the end of the for command that selects the records from the Primary
table.

© DataEase International Ltd

216

end
Type
Procedural Command
Purpose
The end command marks the end of the span of control of other processing and/or procedural
commands.
Syntax

ACTION 1 .

ACTION 2 .

.

.

ACTION N .

end

Usage
An end command is required following the last specified action invoked by a for, case, if, or
while command.
When multiple procedural commands are used in a script, the proper positioning of end
commands is critical to correct processing. Each end command refers to the most recent
procedural command in the script. Each procedural command controls processing of the script
until it reaches its matching end command (see Example 2).
Example 1
 for MEMBERS ;

 list records

 LAST NAME ;

 TOTAL DUE .

 end

This script tells DataEase: Process all the MEMBERS records and list each member's LAST
NAME and TOTAL DUE in the report output.

© DataEase International Ltd

217

Example 2
 for MEMBERS ;

 if highest of RESERVATIONS DATE < 01/01/99 then

 delete records

 else

 delete records in RESERVATIONS

 with (DATE < 01/01/99)

 end

 if highest of RESERVATIONS DATE >= 01/01/99 then

 list records

 LAST NAME in order ;

 highest of RESERVATIONS DATE .

 end

 end

This script tells DataEase: (1) For each MEMBERS record, find the most recently dated record
in the related RESERVATIONS table, (2) if the most recent reservation is dated before
January 1st, 1999, delete the MEMBERS record, (3) if a member's most recent reservation is
dated on or after January 1st, 1999, delete all of that member's RESERVATIONS records
dated prior to 1999, and (4) for all members with reservations dated on or after January 1st
1999, list the members in order by LAST NAME and show the date of each member's most
recent reservation.
Notice that for each if command in the script, there is a corresponding end command. The first
end marks the end of the if command that selects which records to delete. The second end
marks the end of the if command that selects which records to include in the report output. The
third end marks the end of the for command that selects the records from the Primary table.

© DataEase International Ltd

218

enter a record
Type
Processing Command
Purpose
The enter a record command adds a record to the specified table.
Syntax
Enter a record in TABLENAME
Usage
The enter a record command must specify a target table and the field values to be entered into
the table. Alternatively, you can specify another table from which to copy field data using the
copy all from command (see Example 2, below). As data is entered in the table, automatic
error checking is performed, including checks for uniqueness, required fields, range checks,
etc. Any errors are logged to an exception file.
Example 1
 for MEMBERS with TOTAL DUE > 150 ;

 enter a record in CATALOG MEMBERS

 NAME 1 := MEMBERS FIRST NAME ;

 NAME 2 := MEMBERS LAST NAME ;

 HOME ADDRESS := MEMBERS ADDRESS ;

 HOME CITY := MEMBERS CITY ;

 HOME STATE := MEMBERS STATE ;

 ZIP CODE := MEMBERS ZIP CODE .

 end

This script tells DataEase: (1) Select all the MEMBERS records that have an TOTAL DUE
greater than $150, and (2) for each MEMBERS record selected, enter a record in the
CATALOGMEMBERS table, copying the information from each field in the MEMBERS table to
the assigned field in the CATALOG MEMBERS table.
Example 1 simply copies information from the MEMBERS table into the target table. If the
source table and target table have identical field names, you can accomplish the same result
with the simpler script shown in Example 2.

Example 2
 for MEMBERS with TOTAL DUE > 150 ;

 enter a record in CATALOG MEMBERS

 copy all from MEMBERS .

 end

© DataEase International Ltd

219

error messages off
Type
Procedural Command
Purpose
In its default mode of operation, DataEase displays all error messages generated by DataEase
and your SQL database engine. The error messages off command turns off these system-
generated error messages.
Once DataEase processes an error messages off command, no system-generated error
messages are displayed until it reaches an error messages on command or the end of the
whole procedure.
Syntax
error messages off .

Usage
A DQL Procedure can contain any number of error messages off and error messages on
commands.
The error messages off and error messages on commands can be used in both Control
procedures and Processing procedures.
The error messages off command has no effect on messages generated by the DQL
message command, or messages generated by triggers, stored procedures, defaults, rules,
etc. stored on the server.
Example

error messages off .

record entry "MEMBERS" .

run procedure "PRINT RESERVATIONS" .

error messages on .

run procedure "UPDATE CRUISES" .

application status records .

This script tells DataEase: (1) Turn off system-generated error messages, (2) display the
MEMBERS form so the operator can enter new member records, (3) when the operator
finishes entering records, run the PRINT RESERVATIONS procedure, (4) turn on system-
generated error messages, (5) run the UPDATE CRUISES procedure, and (6) display the
status of the records in the current application.

See also error messages on.

© DataEase International Ltd

220

error messages on
Type
Procedural Command
Purpose
The error messages on command turns on system-generated error messages that have been
disabled by the error messages off command.
Once DataEase processes an error messages off command, no system-generated error
messages are displayed until it reaches an error messages on command or the end of the
whole procedure.
Syntax
error messages on.

Usage
A DQL Procedure can contain any number of error messages off and error messages on
commands.
The error messages off and error messages on commands can be used in both Control
procedures and Processing procedures.
Example

error messages off.

record entry MEMBERS" .

run procedure "PRINT RESERVATIONS" .

error messages on.

run procedure "UPDATE CRUISES" .

application status records.

This script tells DataEase: (1) Turn off system-generated error messages, (2) display the
MEMBERS form so the operator can enter new member records, (3) when the operator
finishes entering records, run the PRINT RESERVATIONS procedure, (4) turn on system-
generated error messages, (5) run the UPDATE CRUISES procedure, and (6) display the
status of the records in the current application.

See also error messages off.

© DataEase International Ltd

221

exec SQL
Type
Procedural Command
Purpose
The exec SQL command lets you connect to a specified server, embed an SQL statement in a
DQL Procedure, and terminate a connection to a specified server. A procedure may contain
any number of exec SQL commands. Each SQL statement must be preceded by the exec SQL
command and followed by a period or semicolon.
Embedded SQL statements must use the correct syntax for the target server. When
processing reaches an exec SQL command, DataEase SQL passes the SQL statement to the
current server with no mediation whatsoever (DataEase does not provide any interactive
prompts or check the syntax for you).
Syntax
The exec SQL command is divided into three parts:

1. The first part connects to the server using the following syntax:
exec SQL connect CONNECT_ID to ENGINE_NAME SERVER_NAME

DATABASE_NAME as USER_NAME PASSWORD .

2. The second part executes a user-defined SQL statement against a previously established
connection using the following syntax:

exec SQL at CONNECT_ID ANY SQL STATEMENT [: VARIABLE NAME] ;

3. The third part disconnects from a server using the following syntax:
exec SQL DISCONNECT CONNECT_ID .

 Usage
To connect to a specific server and database, follow the exec SQL command with:

• CONNECT_ID − a user-defined name for the connection.

• ENGINE_NAME − the text description of an enabled SQL Engine. This description must
exactly match the text description in the Engine Type drop-down list in the Database Links
dialog (e.g., Oracle, Other Engines via ODBC).

• SERVER_NAME − the name of the server where the database is stored.

• DATABASE_NAME − the name of an existing database on the specified server.

• USER_NAME − the name of a valid user Logon ID for the specified server. DataEase uses
this User Name to log on to the server.

• PASSWORD − the password associated with the specified USER_NAME.

Note: For connections that use the Other Engines via ODBC link option, you must ensure that
the ODBC Datasource name is a single word without special characters. In this case the
ODBC Datasource name is used for both the SERVER_NAME and the DATABASE_NAME.

© DataEase International Ltd

222

To send embedded SQL statements to the server, follow the exec SQL at command with any
combination of:
Any valid dynamic SQL statement.
Any DataEase variable name(s) (e.g., current date, temp"SQLTEXT").
:VARIABLE NAME - the name of any valid DataEase variable (temp, global, data-entry, or
current) or DataEase field, preceded by a colon.
To terminate a connection to an SQL server, follow the exec SQL command with the keyword
disconnect and the CONNECT_ID.
When you use exec SQL to insert SQL statements in a DQL Procedure, you must use the
names of the SQL tables and columns, not the corresponding DataEase Form and Field
Names. An SQL Table Name or Column Name must not include embedded spaces.
You can combine DQL and exec SQL commands in the same script, but when you use the
SQL INSERT, DELETE, or UPDATE commands within a DQL for loop, you must be especially
careful about how you use the SQL COMMIT command. Incorrect usage may lead to
unexpected results (e.g., you may be locked out or you may not be able to list records that
were modified by the exec SQL statement).
All DQL variables (including current, data-entry, temp, and global variables) can be used in
conjunction with embedded SQL statements to pass values needed for additional processing.
These variables are substituted in the SQL statement when the DQL script executes.
If you use a variable or Field Name in an exec SQL statement, you must precede the variable
or Field Name with a colon. The example below shows a colon used before the variable TAX
RATE:

exec SQL at connect1 UPDATE RESERVATIONS

SET TOTAL_DUE = SUBTOTAL + (SUBTOTAL* : TAX RATE) ;

If you are passing a variable that must normally be enclosed in quotes (for example, a date
value used as part of a comparison in SQL), enclose the entire variable (including the colon)
within single quotes, as shown:

exec SQL at connect1 DELETE FROM CATALOG_MEMBERS

WHERE EXPIRATIONDATE<': current date' ;

© DataEase International Ltd

223

Example
This sample script demonstrates the use of the exec SQL command as well as the current
SQLCODE, current SQLCOUNT, and current SQLMSGTXT variables.
The exec SQL command must precede each SQL command in a DQL script. Each exec SQL
statement must be followed by a period.

 exec SQL connect CONN1 to ORACLE t: oraserv default SCOTT TIGER .

 exec SQL at CONN1 DELETE FROM MEMBERS WHERE

 OVERDUE_90 = "Y" and PAY_PROCESS = "N" ;

 if current SQLCODE not = 0 then

 exec SQL at CONN1 COMMIT ;

 message jointext (current SQLCOUNT, " Members deleted. ")
window .

 else

 exec SQL at CONN1 ROLLBACK ;

 message " Delete from Members failed; all changes rolled back.
" window.

 message current SQLMSGTXT window .

 end

 exec SQL disconnect CONN1 .

The first exec SQL statement.
exec SQL connect CONN1 to ORACLE t: oraserv default as SCOTT
TIGER.

…logs on to the Oracle server (defined by the Oracle connect string t:oraserv) and connects to
the default database via the UserID SCOTT and the Password TIGER. This connection is
identified as CONN1.

The second exec SQL command,
exec SQL at CONN1 DELETE FROM MEMBERS WHERE

OVERDUE_90 = "Y" and PAY_PROCESS = "N" ;

..uses the SQL DELETE command to delete all records for all members whose payments are
more than 90 days in arrears and not currently being processed. The SQL statement is applied
to connection CONN1 What follows is a DQL if...then...else statement:

if current SQLCODE = 0 then

This if statement tells DataEase to check the value in the current SQLCODE variable before
continuing to process the script. If the value of the current SQLCODE is zero (indicating no
errors have occurred), the script continues processing and executes the third exec SQL
command:

© DataEase International Ltd

224

exec SQL at CONN1 COMMIT ;

This command commits the changes to the database permanently. DataEase displays a
message on the screen telling the user how many MEMBERS records were actually deleted.
If current SQLCODE returns a value not equal to zero (indicating an SQL error), the fourth
exec SQL command is executed:

exec SQL at CONN1 ROLLBACK ;

The ROLLBACK command cancels the record deletions before they are permanently saved to
the database. DQL messages inform the user that the transaction has failed and display the
text of the returned SQL error message.
The final exec SQL command:

exec SQL disconnect CONN1 .

..disconnects DataEase from the server and ends processing of the script.

© DataEase International Ltd

225

exit
Type
Procedural Command
Purpose
The exit command is used to immediately terminate a script.
Syntax
exit .

Usage
The exit command can be used anywhere in a script. When it is executed, the script
immediately stops processing and returns control to the user or calling procedure.
Example
 for MEMBERS ;

 list records

 TOTAL DUE in reverse ;

 LAST NAME .

 if current item number > 5 then

 exit .

 end

 end

This script tells DataEase: (1) List the five members with the highest TOTAL DUE values, and
(2) when the fifth record is processed, terminate the script. Note that two end commands are
required to fulfill the DQL syntax requirements even though the exit command terminates
processing.
The output from this script, arranged in descending order on the TOTAL DUE field, might look
as follows:

Last Name Total Due
Christino $280.00
Perrault $215.00
Strachan $205.00
Stafford $185.00
Jones $175.00

© DataEase International Ltd

226

exp
Type
Scientific Function
Purpose
The exp function calculates the exponential value of a numeric value.
Syntax
exp(NUMERIC VALUE)

Returns
A numeric value equal to ex where e = 2.71828183
Usage
The numeric value in a Scientific function can be a constant value (as shown below), a
variable, a field value, or an expression.
Examples
exp(2)

Returns:7.3890561

exp(-3)

Returns:.0497871

© DataEase International Ltd

227

export
Type
Processing Command
Purpose
The export command exports data from the current application to an external file. The export
command functions like choosing File>>Export in User View.
Syntax
export to " FILENAME "

.form headerTEXT | FIELDNAME

.items@f[FORM NUMBER, FIELD NUMBER, FIELD LENGTH]@f[FORM NUMBER,
FIELD NUMBER, FIELD LENGTH]...

.form trailerTEXT

.end

In this syntax example, the brackets are required; optional parameters are shown in italics.
Usage
The export command must be preceded in a script by a list records command that specifies
the source table and the fields to be exported. The numeric parameters included in the export
command refer to the sequential listing of the form(s) and field(s) included in the preceding list
records command.
The export command lets you include the following formatting commands: .form header,
.items, .form trailer, and .end. Items listed under the .form header, .form trailer, and .end
commands print only once in the output file DataEase generates. Items listed under the .items
formatting command, print multiple times, once for each record processed.
Example 1
 for MEMBERS ;

 list records

 MEMBER ID in order ;

 CARDNO. ;

 TOTALDUE .

 end

 export to "MEMBDATA.TXT" .

 .form header

 Member ID~ Card No.~ Total Due

 .items

 @f[1,1]~ @f[1,2]~ @f[1,3]

 .end

This example generates a variable length delimited ASCII file. Each record begins on a new
line and each field value is separated by a tilde (~) character.
This example tells DataEase: (1) process all the MEMBERS records, listing the MEMBER ID in
order, the credit CARD NO., and the total membership dues, (2) export the same data to a file
called MEMBDATA.TXT, (3) include a header record in the export file that lists the column
names.

© DataEase International Ltd

228

Example 2

 for MEMBERS ;

 list records

 LAST NAME .

 for RESERVATIONS

 list records

 TOTALDUE .

 end

 end

 export to "a: \MEMTOTAL.TXT" .

 .form header members .items

 .form header reservations

 @f[1,1]~ @f[2,1]

 .end

This example tells DataEase to: (1) process all the records in the MEMBERS table, listing the
LAST NAME of each member, (2) for each MEMBERS record processed, list the TOTAL DUE
value from all the related RESERVATIONS records, and (3) export the data to a variable
length delimited ASCII file called MEMTOTAL.TXT located on disk drive "A". The syntax
@f[2,1] refers to form 2 (RESERVATIONS), field 1 (TOTAL DUE).
Example 3
 for MEMBERS ;

 list records

 MEMBERID in order ;

 CARDNO. ;

 TOTALDUE .

 end

 export to "MEMBDATA.TXT" .

 .form header

 .items

 @f[1,1,5]@f[1,2,20]@f[1,3,7]

 .end

This example generates a fixed length ASCII file and includes the same data as in Example 1.
The third digit in the field specification indicates the length of the field.

© DataEase International Ltd

229

firstc
Type
Text Function
Purpose
The firstc function extracts a specified number of characters (n) from the beginning (left) of a
text value.
Syntax
firstc(TEXT VALUE, n)

Returns
A text string n characters in length.
Usage
Leading blanks are included in the count of characters (n).
Examples
firstc ("Sapphire International Ltd." , 8)

Returns: Sapphire

firstc ("Club ParaDEASE" , 6)

Returns: Club P

firstc (LAST NAME, 4)

Returns: The first four characters in the LAST NAME field for every record that is processed. If
a record contains the value Birnbaum in the LAST NAME field, the function returns Birn.

© DataEase International Ltd

230

firstlast
Type
Text Function
Purpose
The firstlast function converts a text value from the format: LastName, FirstName[M.] to the
format: FirstName[M.]LastName. The [M.] is an optional middle initial (or name).
Syntax
firstlast(TEXT VALUE)

Returns
A text value.
Usage
This function is used when names are stored in a single field. The contents of the field are
rearranged so the first word (i.e., the last name) becomes the last word in the returned string. If
the name is followed by a comma, the comma is deleted.
Examples
firstlast ("Anthony, Susan B.")

Returns: Susan B. Anthony

firstlast ("Eliot, T.S.")

Returns: T.S. Eliot

firstlast (FULL NAME)

Returns: The value in the FULL NAME field in the format shown above for every record that is
processed. If a record contains the value Holmes, Sherlock in the LAST NAME field, the
function returns Sherlock Holmes.

© DataEase International Ltd

231

firstw
Type
Text Function
Purpose
The firstw function extracts a specified number of words from the beginning (left) of a text
value.
Syntax
firstw(TEXT VALUE, n)

Returns
A text value n words in length.
Usage
firstw(FIELDNAME, n) returns the first n words in the field, including intervening punctuation
symbols. Leading spaces are treated as delimiters. Trailing spaces are ignored. If there are n
or fewer words in the field, firstw returns the original text value.
Examples
firstw("Sapphire International Ltd." , 2)

Returns: Sapphire International,

firstw("Club ParaDEASE" , 1)

Returns: Club

firstw(ADDRESS , 2)

Returns:The first two words in the ADDRESS field for every record that is processed. If a
record contains the value 540 Avenida de los Delfines in the ADDRESS field, the function
returns 540 Avenida.

© DataEase International Ltd

232

floor
Type
Math Function
Purpose
The floor function rounds down a numeric value to the next lowest integer.
Syntax
floor(NUMERIC VALUE)

Returns
An integer value.
Usage
The numeric value in a Math function can be a constant value, a variable, a field value, or an
expression.
Examples
floor(5.000)

Returns: 5

floor(5.999)

Returns: 5

floor ((current date - BIRTHDATE) /365.25)

Returns: The result of the age calculation. The operation contained in the interior set of
parentheses is performed first and returns an age value expressed in days. The exterior
calculation converts the age in days to years. If the current date is 05/30/2001 and the value in
the BIRTHDATE field is 07/02/62, the function returns 38.

© DataEase International Ltd

233

for
Type
Processing Command
Purpose
The for command is used in a script to specify the table from which records are selected for
processing and the criteria used to select those records.
Usage
The for command is the most frequently used word in the DataEase Query Language. Most
Processing procedures begin with this command.
A script can have multiple for commands when records must be selected from different tables
(see Examples 1 and 2). for commands can be nested to alter the sequence of program
actions (see Example 3).
The for command is always terminated by an end command. Actions specified between a for
command and its corresponding end command are executed once for each record selected by
the for command.
Syntax
for TABLENAME|RELATIONSHIP

[named "UNIQUE RELATIONSHIP NAME"]

[with (selection criteria)] ;

The for command usually requires a semicolon after the TABLENAME (and selection criteria, if
any). However, when a for command is nested within another for command, only the
outermost for command requires a semicolon (see Example 3).
Example 1
Example 1 shows how to use a for command to access a single table.
 for MEMBERS with TOTAL DUE > 175 ;

 list records

 LAST NAME in order ;

 TOTAL DUE .

 end

This script tells DataEase: (1) Select the MEMBERS records that have a value greater than
$175 in the TOTAL DUE field, and (2) for each selected record, list the member's LAST NAME
and TOTAL DUE. The output from this script, arranged in alphabetical order by LAST NAME,
might look like this:

Last Name Total Due
Christino 280.00
Perrault 215.00
Stafford 185.00
Strachan 205.00

© DataEase International Ltd

234

Example 2
Example 2 shows how to use sequential for commands without nesting.
 for MEMBERS with TOTAL DUE > 200 ;

 list records

 LASTNAME in order .

 end

 for RESERVATIONS ;

 list records

 LASTNAME in order ;

 RESERVATION I D ;

 TOTAL DUE .

 end

This script tells DataEase: (1) Select the MEMBERS records that have a value greater than
$200 in the TOTAL DUE field, (2) for each selected record, list the member's LAST NAME, (3)
select all the RESERVATIONS records, and (4) for each RESERVATIONS record, list the
LAST NAME, RESERVATION ID and TOTAL DUE.
When a script contains two or more for statements that list records, DataEase prints or
displays all records requested by the first for statement first, then displays all records
requested by the second for statement, and so on. The output for the script in Example 2 might
look like this:

Last Name
Christino
Perrault
Stafford
Strachan

Last Name Reservation ID Total Due
...
Christenson 00011 3,360.00
Christino 00139 5,450.00
Christino 00259 4,570.00
Christino 00765 6,490.00
Chu 00113 2,780.00
Chu Cipriano 00541 3,480.00
Clark 00052 2,660.00
... 00194 6,290.00

© DataEase International Ltd

235

Example 3
Example 3 shows how to use nested for commands.
Although you can display data from multiple tables using sequenced for statements, as shown
in Example 2, a script may run faster and generate more useful output when it contains nested
for statements as shown in Example 3:
 for MEMBERS with TOTAL DUE > 200 ;

 for RESERVATIONS

 list records

 MEMBERS LAST NAME in groups ;

 RESERVATIONID in order ;

 TOTAL DUE .

 end

 end

In this script, the second for command, which is nested within the first, selects all
RESERVATIONS records related to the selected MEMBERS records. For each of those
RESERVATIONS records, DataEase performs all the actions between the second for and its
corresponding end.
This query tells DataEase: (1) Select the MEMBERS records that have a value greater than
$200 in the TOTAL DUE field, (2) find all the related RESERVATIONS records for each
MEMBERS record selected in Step 1, (3) for each selected MEMBERS record, list the
member's LAST NAME, and (4) for each selected RESERVATIONS record, list the
RESERVATION ID and the TOTAL DUE.
Notice that in Example3, there is no semicolon after the second for because it is nested within
another for command. In contrast, both for statements in Example 2 require a semicolon
because neither statement is nested inside another for statement. The output from this script,
arranged in alphabetical order by LAST NAME, might look as shown on the next page.

Last Name Reservation ID Total Due
Christino 00139 5,450.00

00259 4,570.00
00765 6,490.00

Perrault 00150 2,900.00
00445 2,790.00
00671 3,010.00

Stafford 00098 5,712.00
Strachan 00044 3,740.00

00337 4,120.00

The in groups operator tells DataEase to processes all the records for each member together
as a group and to list the members in alphabetical order. The in order operator tells DataEase
to arrange the data for each member in ascending order by RESERVATION ID.
Note: The in groups operator always precedes the in order operator in a script.

© DataEase International Ltd

236

Functions
Type
Concept
Purpose
The 58 DataEase functions execute calculations, manipulate text, and perform other time-
saving data-entry operations. There are nine groups of functions, briefly summarized below.
• The if function returns one of two values based on its evaluation of a specified condition as

true or false.
• Date functions convert a date into a number representing the day, month, year, day of the

week, or day of the year on which the specified date falls.
• Spell functions convert a date or numerical value into its equivalent text value.
• Time functions extract the hour, minutes, or seconds from a 24-hour format time value or

assign the appropriate AM or PM suffix.
• Text functions are used to concatenate, truncate, or manipulate a text value.
• Financial functions calculate either the beginning value, end value, interest rate, installment

amount, or number of payment periods for a financial transaction, given the values of the
other four variables.

• Scientific functions raise a base value to a power, derive natural and base 10 logs, or derive
the square root of a value.

• Trigonometric functions convert a numeric value into a value expressed in radians.
• Math functions perform common mathematical rounding operations or return the absolute

value of a specified numeric value. The random function generates a pseudo random
number.

For a full explanation of any DQL function, see the entry listed under the function's name in
this Language Reference.

© DataEase International Ltd

237

futurevalue
Type
Financial Function
Purpose
The futurevalue function calculates the final value of a financial transaction given the
presentvalue, installment payment, interest rate, and number of payment periods.
Syntax
futurevalue(presentvalue, installment, rate, periods)

Returns
A numeric value (the final value after all payments are made).
Usage
If the installment payment increases the value of the investment (e.g., an annuity), the
installment must be expressed as a positive amount. If the payment decreases the value of the
investment (e.g., loan amortization), the installment must be expressed as a negative amount.
The interest rate, installment payments, and time periods must be based on the same terms.
For example, if payments are made monthly on a five-year loan, the number of periods is
(12*5) or 60. The interest rate must be expressed in the same terms (the monthly interest rate
is the annual rate divided by 12). The interest rate must also be expressed as a whole number
(10% is 10, not 0.10).
Example 1
futurevalue(10000, 100, 10 / 12, 120)

Returns: 47,554.91

This example calculates the futurevalue (accumulated balance) of a monthly savings plan, if
you start with $10,000 and add $100 every month for 12 years at an annual interest rate of
10%.
Example 2
futurevalue(10000, 1200, 10, 12)

Returns: 57,045.42

This example calculates the futurevalue (accumulated balance) of an annual savings plan,
starting with $10,000 and adding $1200 each year for 12 years at an annual interest rate of
10%. Both examples assume that installments are paid at the start of each period.

Note: When typing fractions like 10 / 12, DataEase requires that you type a space before and
after the / division symbol.
DataEase financial functions are derived from the formula shown below. (The double asterisks
(meaning "raise to the power") cannot be used in a script).
futurevalue = principal * ((1 + (rate/100)) ** periods) + (installment/(rate/100)) * (((1 +

(rate/100)) ** periods) - 1)

© DataEase International Ltd

238

global
Type
Keyword
Purpose
The keyword global specifies a global variable.
A variable is used to store a value such as a text string or a calculated result that can change
during the processing of a procedure. By specifying the variable's name in a script, the stored
value can be used like any other value.
The status of a variable can be global (denoted by the keyword global) or temporary (denoted
by the keyword temp).
A temporary variable can hold a value only while processing the current script.
A global variable can pass its value from one script to another within a Control procedure. To
pass a value from one script to another, a variable must be defined identically in each script.
Syntax
global VARIABLE NAME

Usage
When processing a Control procedure that links two or more Processing procedures, each
global variable with the same name and type is considered the same variable and can pass its
value from one Processing procedure to another.
Example

define global "INCOME" Number .

define global "EXPENSE S" Number .

define global "PROFI T" Number .

run procedure "MONTHLY TOTALS" .

if global INCOME > global EXPENSES then

run procedure "PAYROLL BONUS" .

else

run procedure "REGULAR PAYROLL" .

end

This script is a Control procedure that tells DataEase: (1) Create (define) three global variables
called INCOME, EXPENSES, and PROFIT to store three different numbers while processing
the script, (2) run the MONTHLY TOTALS procedure. The MONTHLY TOTALS procedure
(shown below) calculates the total income and expenses for the month and subtracts the latter
from the former to determine the amount of profit. As each of these totals is calculated, it is
assigned to the appropriately named global variable, (3) if the INCOME variable is greater than
the EXPENSES variable, run the PAYROLL BONUS procedure using the value stored in the
PROFIT variable to calculate each employee's bonus (a percentage of the profit based on the
employee's salary level), and (4) if the INCOME variable is not greater than the EXPENSES
variable, run the REGULAR PAYROLL procedure.

© DataEase International Ltd

239

The MONTHLY TOTALS Processing procedure looks like this:
Example
 define global "INCOME" Number .

 define global "EXPENSES" Number .

 define global "PROFIT" Number .

 assign global INCOME := sum of RESERVATIONS

 with (DATE between 06/01/01 to 06/30/01) TOTAL DUE .

 assign global EXPENSES := sum of EXPENDITURES

with (DATE between 06/01/01 to 06/30/01) TOTAL COST . assign
global PROFIT : = global INCOME - global EXPENSES .

 end

The key feature of this example is the fact that the global variables are identically defined in
the Processing procedure which calculates the value of each variable and in the Control
procedure which passes these values from one Processing procedure to another.

© DataEase International Ltd

240

Grouping
Type
Concept
Purpose
Grouping lets you process records with the same field value together.
Usage
There are two DQL operators that control grouping: in groups and in groups with group-totals.
They perform identically; “in groups with group-totals” is included for compatibility with previous
versions of DataEase.
The in groups operator causes records with identical values in a specified field to be processed
as a single group. The groups are automatically sorted in ascending order. For example,
French Polynesian clubs are listed together as a group followed by the Haitian clubs, and so
on.
Example 1
 for CLUBS ;

 list records

 COUNTRY in groups ;

 CLUB NAME in order ;

 CITY .

 end

The output generated by the script in Example 1 is grouped on the COUNTRY field (shown in
bold):

Country Club Name City
French Polynesia Bora Bora Papeete

Moorea Moorea

Haiti Magic Isle La Pointe aux Sables

Mexico Cancun Yucatan
Chichen Itza Chichen Itza
Cholula Cholula
Coba Coba
Huatulco Oaxaca
Ixtapa Guerrero
Playa Blanca Jalisco
Sonora Bay Sonora
Teotihuacan Villa de Teotihuacan
Uxmal Uxmal

© DataEase International Ltd

241

Example 2
The in groups operator groups records and generates statistical totals for each group if any
other statistic is requested by the script.
 for CLUBS ;

 list records

 COUNTRY in groups ;

 CLUB NAME in order ;

 CITY ;

 "A" = "A" : count .

 end

In this example, the count statistic allows DataEase to calculate the group total for each
country. The line:

 "A" = "A" : count .

..tells DataEase to count every record that is processed.

The output includes the group level statistics (shown in bold):

Country Club Name City
French Polynesia Bora Bora Papeete

Moorea Moorea

Group Total 2
Haiti Magic Isle La Pointe aux Sables
Group Total 1
Mexico Cancun Yucatan

Chichen Itza Chichen Itza
Cholula Cholula
Coba Coba
Huatulco Oaxaca
Ixtapa Guerrero
Playa Blanca Jalisco
Sonora Bay Sonora
Teotihuacan Villa de Teotihuacan
Uxmal Uxmal

Group Total 10
...
Total CLUBS: 25

There are two key points to remember when using Grouping:
Grouping automatically sorts groups in ascending alphabetical or numerical order (e.g., French
Polynesian clubs before the Haitian clubs).
Grouping operators must precede Sorting operators (in order and in reverse) in a script.

© DataEase International Ltd

242

highest of
Type
Relational Statistical Operator
Purpose
The highest of operator finds the highest value in a specified field in all matching records in a
related table. The result can appear as a list item in the detail area of a report or as a statistic
in the summary area at the end of each group or the end of the report.
Syntax
highest of TABLENAME|RELATIONSHIP [named "UNIQUE RELATIONSHIP NAME"
] [with (selection criteria)] FIELDNAME ;|.

Returns
A value of the same type as the specified field. If a Text field is specified, DataEase returns the
highest ASCII value. If a Choice field is specified, DataEase returns the value in the highest
numbered choice (not necessarily the highest ASCII value).
Example
 for MEMBERS ;

 list records

 LASTNAME in order ;

 highest of RESERVATIONS TOTAL DUE .

 end

This script tells DataEase: (1) Process all the MEMBERS records and list each member's
LAST NAME in alphabetical order, (2) for each MEMBERS record, find all the related records
in the RESERVATIONS table (those that have a matching MEMBER ID), and (3) list the
highest TOTAL DUE in the set of matching RESERVATIONS records.
The output from this script, arranged in alphabetical order by LAST NAME, might look as
follows:

Last Name Highest of Reservations Total Due
Adams $3000.00
Albert $4760.00
Anders $4420.00
Andersen $2100.00
... ...

If you also want to include the highest TOTAL DUE among this group of invoices, change the
fourth line of the query to read:

highest of RESERVATIONS TOTAL DUE : item max .

Note: There's an important difference between the statistical operator max and the relational
statistical operator highestof. max finds the highest value in the specified field among all the
records being processed. highest of finds the highest value among the records related to the
records being processed.

© DataEase International Ltd

243

hours
Type
Time Function
Purpose
The hours function extracts the hour from a time value expressed in a 24-hour format.
Syntax
hours(TIME VALUE)

Returns
An integer value from 00 to 23.
Examples
hours(12:00:00) {midday}

Returns:12

hours(23:59:00) {one minute before midnight}

Returns:23

Note: The bracketed text above (e.g., midday) is used to clarify the time of day only; it is not
one of the function's parameters.

© DataEase International Ltd

244

if Command
Type
Procedural Command
Purpose
The if command executes one of two different actions (or series of actions) based on whether
a specified condition is true or false.
When processing reaches an if command, DataEase evaluates the condition that follows the
keyword if.
If the specified condition is true, DataEase executes all the actions which follow the keyword
then until processing reaches the corresponding end or else command.
If the specified condition is false, DataEase executes all the actions that follow the keyword
else (if present) until processing reaches the corresponding end command.
Syntax
if CONDITION then

ACTION 1 .

[ACTION 2 .

.

.

 ACTION N .]

 [else

ACTION 1 .

[ACTION 2 .

.

.

ACTION N .]]

end

Usage
A script may contain multiple if commands nested within one another (see Example 2). An
additional if command can appear after either then or else.
Each if command must contain at lease one true action (following the keyword then). When an
if statement contains an else command, at least one action must follow the keyword else.
Example 1
 for MEMBERS ;

 if highest of RESERVATIONS DATE <01/01/99 then

 delete records .

 else

 delete records in RESERVATIONS

 with (DATE < 01/01/99) .

 end

 end

© DataEase International Ltd

245

This script tells DataEase: (1) For each MEMBERS record, find the most recently dated record
in the related RESERVATIONS table, (2) if the most recent invoice is dated before January
1st, 1999, delete the MEMBERS record, and (3) if a member's most recent invoice is dated on
or after January 1st, 1999, delete all of that member's RESERVATIONS records dated prior to
1999.
The first end marks the end of the if command that selects the records to delete. The second
end marks the end of the for command that selects the records from the Primary table.
Example 2
Nested if Command:
 for RESERVATIONS ;

 if TOTAL DUE > 3000 then

 modify records in MEMBERS

 STATUS := PREFERRED .

 if DATE between 01/01/99 to current date then

 enter a record in CATALOG MEMBERS

 copy all from MEMBERS .

 end

 end

 end

This script tells DataEase to divide the RESERVATIONS records into two groups and process
them as follows: (1) The records with a TOTAL DUE greater than $3000 are modified by
changing the value in the STATUS field to PREFERRED, and (2) the records with a TOTAL
DUE greater than 3000 and a DATE between the start of 1994 and today's date are modified
and also copied into the CATALOG MEMBERS table.
In this example, the second if command, which selects a subgroup of the records selected by
the first if command, is nested within the first if command.

© DataEase International Ltd

246

if Function
Type
Conditional Function
Purpose
The if function evaluates a specified condition and returns one of two specified values based
on whether the condition is true or false.
Syntax
if(CONDITION, TRUE VALUE, FALSE VALUE)

Returns
The true value if the specified condition is true. The false value if the specified condition is
false.
Usage
In a field Derivation formula, you can use the if function to:
• derive a field value based on one of two specified values or expressions depending on

whether a condition is true or false (see Example 1).
In a Validation formula, you can use the if function to:
• check a field's validity based on one of two specified expressions depending on whether a

condition is true or false (see Example 2).

When you use an if function in a Derivation or Validation formula, the true value and false
value parameters must be of the same data type as the field being derived or validated.
In a script, you can use the if function to:
• assign one of two specified values to a field or variable based on whether the condition is

true or false (see Example3).
• hide or show a field, calculated value, or text string in a procedure's output depending on

whether a condition is true or false (see Example 4).

A script, Derivation formula, or Validation formula may have multiple if function statements
nested within one another.
Example 1
Using the if function in a Derivation formula:
The following example shows the iffunction used to derive the value in a Text field. The
function returns one of two text values depending on the current time in the computer's system
clock.

if(ampm(current time) = "AM" , " in the morning " ,

 "in the afternoon")

Because this Derivation formula returns a value for a Text field, the true value ("in the
morning") and the false value ("in the afternoon") are both text expressions.
The following example shows the iffunction used in a Derivation formula for a Number field
named DISCOUNT. The formula returns one of two DISCOUNT values depending on the
value in another field, TOTAL DUE.

© DataEase International Ltd

247

if(TOTAL DUE >= 500, TOTAL DUE * 0.15, TOTAL DUE * 0.03)

This formula evaluates the value in the TOTAL DUE field. If that value is greater than or equal
to $500 (making the condition true), the formula sets the value of DISCOUNT to TOTAL DUE *
0.15 If the value of TOTAL DUE is less than $500 (making the condition false), the formula
sets the value of DISCOUNT to TOTAL DUE * 0.03.
By nesting if statements inside one another, you can define a Derivation formula that evaluates
multiple conditions and returns one of several values. The example below shows how one if
statement can be nested inside another to return one of three DISCOUNT values depending
on the value in the TOTAL DUE field:

if(TOTAL DUE >= 500, TOTAL DUE * 0.15,

if(TOTAL DUE >= 200, TOTAL DUE * 0.08, TOTAL DUE * 0.03))

This formula evaluates the value in the TOTAL DUE field. If that value is greater than or equal
to $500 (making the condition true), the formula sets the value of DISCOUNT to the TOTAL
DUE multiplied by 0.15. If the value is less than $500 (making the condition false), a second if
statement evaluates TOTAL DUE to determine if its value is greater than or equal to $200. If
this second condition is true, the value of DISCOUNT is set to the TOTAL DUE multiplied by
0.08. Otherwise DISCOUNT is set to TOTAL DUE * 0.03.

Example 2
Using the if function in a Validation formula:
The example below shows how the if function can be used in a Validation formula to
conditionally apply one of two validation criteria to a field named CREDIT PURCHASES.

if(OVERDUE DAYS < 90, <=5000, <50)

This Validation formula evaluates the value in a field named OVERDUE DAYS (this field tracks
a customer's past-due invoices). If that value is less than 90 (meaning the customer has no
invoices over 90 days past due), then any value up to $5000 is valid in the CREDIT
PURCHASES field. If the value of OVERDUE DAYS exceeds 90, then only up to $50 can be
saved in the CREDIT PURCHASES field.

Example 3
Using the if function to assign a value in a DQL script:
The examples below show how to use the if function in a DQL script to conditionally assign a
value to a field or variable depending on whether a condition is true or false.

modify records in RESERVATION AGENTS

BONUS := if(SALES > 80000, 1000, 0) .

This script assigns a value to the BONUS field in all RESERVATION AGENTS records. If an
employee generated more than $80,000 in sales last quarter, the value in the BONUS field is
set to 1000. Otherwise the value of BONUS is set to zero.

© DataEase International Ltd

248

The following line shows the if function used to assign a value to a temporary variable in a
DQL script:

assign temp BONUS := if(SALES > 80000, 1000, 0) .

Example 4
You can use the if function to conditionally display fields, calculated values, or text strings in
the output of a DQL procedure. The script below uses the if function to display the SALARY
field in a procedure's printed output only if the procedure is run by a specific user:

 for EMPLOYEES ;

 list records

 LAST NAME in order ;

 FIRST NAME ;

 JOB TITLE ;

 if(current user name = "Moe" , SALARY, BLANK) .

 end

This script tells DataEase: (1) For each record in the EMPLOYEES table, list the LAST NAME,
FIRST NAME, and JOB TITLE, (2) evaluate the current user name system variable, and if the
current user is Moe, list each employee's SALARY along with his/her other data, (3) otherwise,
do not list the SALARY field.

© DataEase International Ltd

249

import
Type
Control Command
Purpose
The import command imports a data file into the current application. It can be used to import
data at any point during a procedure. After executing the import, the data can be used in the
same procedure.
Syntax
import "IMPORT SPECIFICATION FILENAME" .

Usage
The import command can only be used to execute a previously defined Import Specification.
The filename that follows the import command is the filename of the Import Specification. This
name must be eight or fewer characters with no intervening spaces.
LAN
On a LAN (Local Area Network), if another user is currently using any resource required by the
import command, DataEase displays a Resource Conflict message. While this message is
displayed, DataEase automatically tries to execute the command at brief intervals.
When the required resource becomes available, DataEase automatically resumes processing
and executes the rest of the procedure.
Example

import "MAILING LIST" .

run procedure "PRINT CONFIRMATIONS" .

This script tells DataEase: (1) Execute the MAILING LIST Import Specification, and (2) when
the import is completed, run the PRINT CONFIRMATIONS procedure.

© DataEase International Ltd

250

in
Type
Keyword
Purpose
The in operator tells DataEase to use a table other than the script's Primary table when
executing a list records, delete records, modify records, or enter a record command.
Syntax
in TABLENAME|RELATIONSHIP

[named "UNIQUE RELATIONSHIP NAME"]

 [with (selection criteria)]

Usage
When the in operator is used without selection criteria, DataEase performs the action on all
related records in the specified table. The in operator should not be used to process records in
the script's Primary table (see the Caution below).
Example 1

for MEMBERS ;

modify records in RESERVATIONS

TOTALDUE := TOTALDUE - DISCOUNT .

end

This script discounts every related RESERVATIONS record each time a MEMBERS record is
processed. Since every reservation is related to only one member, each record is discounted
only once.
Example 2

for RESERVATIONS ;

modify records

TOTALDUE := TOTALDUE - DISCOUNT .

end

This script correctly modifies records in the Primary table. The in keyword is omitted from a list
records, modify records, or delete records command when the action is performed on the
Primary table.

Caution
Be careful not to use the following construction in a script:
 for RESERVATIONS ;

 modify records in RESERVATIONS

 TOTAL DUE := TOTAL DUE - DISCOUNT .

 end

This example demonstrates an incorrect use of the in operator. This script discounts every
RESERVATIONS record each time a record is processed (i.e., each reservation is discounted
as many times as there are records to process).

© DataEase International Ltd

251

in groups
Type
Grouping Operator
Purpose
The in groups operator groups records and generates statistical totals for each group if any
other statistic is requested by the query.
Note: the variation “in groups with group-totals” is included for compatibility with previous
version of DataEase. Either version will include statistics if they are required
Syntax
FIELDNAME in groups [with group-totals] ;

Usage
The in groups operator can be used only on list items following the list records command. It
cannot be used with the enter a record, modify records, or delete records commands.
In the procedure output, the group identifier appears only once at the beginning of a group. If
statistics are specified for any output fields, group subtotals for those fields are included in the
output.
An item to be processed in groups with group-totals should be listed before all other output
items in a script, including items to be sorted in order. When a field is listed in groups with
group-totals, DataEase also sorts the groups in order (e.g., when grouping MEMBERS by
STATE, all California members are listed before any Colorado members).

Caution
Grouping operators cannot be used with the all relational operator (i.e., if RESERVATIONS is
the Primary table, you cannot use the query statement: all MEMBERS STATE in groups.
Example
 for MEMBERS ;

 list records

 STATE in groups ;

 LASTNAME in order ;

 TOTALDUE : item sum .

 end

© DataEase International Ltd

252

This script tells DataEase: (1) Process all MEMBERS records with the same value in the
STATE field as a group, (2)display the group identifier (STATE) once at the beginning of each
group, (3) within each group, arrange the members alphabetically by LAST NAME, and (4) list
each member's TOTAL DUE, the subtotal for each STATE group, and the sum of all the
TOTAL DUE amounts combined. The output from this query might look as follows:

State Last Name Total Due
...
DC

Dowling $115.00
Schmidt $85.00
Spinelli $100.00
Group Total: $300.00

DE
Gross $35.00
Stromboulis $70.00
Group Total: $105.00

...
Grand Total: $405.00

© DataEase International Ltd

253

in order
Type
Sorting Operator
Purpose
The in order operator tells DataEase to process records and display the output in sequence
from lowest to highest value in the specified field. (e.g. 01011, before 01012, before 01013,
etc.).
Syntax
FIELDNAME in order ;|.

Usage
The in order operator can be used only on list items following the list records command. It
cannot be used with the enter a record, modify records, or delete records commands.
The in order operator can be used on any type of field. A Time, Date, or Number field is
ordered from lowest to highest value. A Choice field is sorted by Choice number. A Text field is
sorted in alphabetical order.
DataEase orders alphanumeric values in standard ASCII sequence and makes no distinction
between upper and lower case.
If a script specifies an item to be processed in groups, that item should be listed before all
other output items in a script, including items to be sorted in order. When a field is listed in
groups, DataEase also sorts the groups in order (e. g., when grouping MEMBERS by STATE,
all Alabama members are listed before any Alaska members).

Caution
Sorting operators cannot be used in conjunction with the all relational operator (e.g., if
RESERVATIONS is the Primary table, you cannot use the statement:

all MEMBERS LAST NAME in order ;

© DataEase International Ltd

254

Example
 for RESERVATIONS ;

 list records

 STATE in groups ;

 ZIP CODE in order ;

 LAST NAME in order .

 end

This script tells DataEase: (1) Process all the RESERVATIONS records with the same value in
the STATE field together as a group, (2)display the group identifier STATE once at the
beginning of each group, (3) within each group, arrange the members in order from lowest to
highest ZIP CODE, and (4) within each ZIP CODE, arrange the members in alphabetical order
by LAST NAME. A portion of the output from this script might look as follows:

State Zip Code Last Name
...
DC

20007-3947 Spinelli
20036-0000 Dowling
20036-8749 Schmidt

DE
19810-3729 Stromboulis
19901-3445 Gross

...

© DataEase International Ltd

255

in reverse
Type
Sorting Operator
Purpose
The in reverse operator tells DataEase to process records and display the report output in
reverse sequence from highest to lowest value in the specified field.
Syntax
FIELDNAME in reverse ;|.

Usage
The in reverse operator can be used only on list items following the list records command. It
cannot be used with the enter a record, modify records, or delete records commands.
The in reverse operator can be used on any type of field. A Time, Date, or Number field is
ordered from highest to lowest value. A Choice field is sorted by Choice number from highest
to lowest. A Text field is sorted in reverse alphabetical order.
DataEase orders alphanumeric values in standard ASCII sequence and makes no distinction
between upper and lower case. Sorting operators cannot be used in conjunction with the all
relational operator (e.g., if RESERVATIONS is the Primary table, you cannot use the
statement:

all MEMBERS LAST NAME in reverse ;

Example
 for MEMBERS ;

 list records

 STATE in groups ;

 ZIP CODE in reverse ;

 LAST NAME in order .

 end

This script tells DataEase: (1) Process all the MEMBERS records with the same value in the
STATE field together as a group, (2)display the group identifier STATE once at the beginning
of each group, (3) within each group, arrange the members in highest to lowest ZIP CODE
code order, and (4) within each ZIP CODE code, arrange the members in alphabetical order by
LAST NAME. A portion of the output from this script might look as follows:

State Zip Code Last Name

DC
20036-8749 Schmidt
20036-0000 Dowling
20007-3947 Spinelli

DE
19901-3445 Gross
19810-3729 Stromboulis

© DataEase International Ltd

256

input using
Type
Processing Command
Purpose
The input using command provides all the facilities of record entry but allows DQL to process
records before they are entered into the database. It can be used at any point in a procedure.
Syntax
input using TABLENAME into "TEMPFORM" via form EXISTINGFORM .

In the input using command syntax, FORMNAME is the name of a table. TEMPFORM is the
name DataEase uses to reference an input using record. You can assign any name you want
for this purpose except the name of a form in the same application. The first time that the
TEMPFORM name is specified in the script, it must be enclosed in quotation marks.
The optional “via form EXISTINGFORM” displays the form document EXISTINGFORM, which
is the name of an existing form that uses as its main table the table specified by TABLENAME.
If no form name is specified, DataEase displays the form that has the same name as the table,
usually the form that defines the table.
There is no limit to the number of input using commands you can use in a script; however,
each DataEase form must be assigned a unique TEMPFORM in the input using statement.
Usage
The input using command tells DataEase to display a specified record entry form. When the
specified form is displayed, you can either enter or modify a record (in Form View), or scroll
through the form (in Form or Table View) and select any existing record. You can also use the
Goto>>Related Form menu option (or F10 key) to view records in related forms.
When you execute a processing action (e.g., File>>Close, Edit>>Save As New Record), the
input record is copied into memory and a number that corresponds to the processing key is
stored in the current status variable. DataEase then resumes processing the procedure, using
the input using record data just like values entered in a Data-entry form. The current status
value can be used to control subsequent processing. The table below summarizes the current
status values returned by each processing action:

This
Menu Selection

Performs
This Action

And Returns
This Value

File>>Close Close the active document 1
Edit>>Save As New Record Save a new record 2
Edit>>Save Modify an existing record 3
Edit>>Delete Delete a record 4

Like a Data-entry form, the input using command is used to enter data for use in a procedure
(rather than to permanently store the data in a table in the database). Unlike a Data-entry form,
however, more than one input using statement can be used to enter data at any point during a
procedure.
The input using command can only hold one record in memory at a time for a given
TEMPFORM name. Therefore, if you want to save the contents of an input using record, you
must use the enter a record command in the script to save the current record before
processing another. Example 2 demonstrates the use of the input using command and current
status variable within a loop to process multiple records.

© DataEase International Ltd

257

Because input using can only hold one record in memory, the form must be displayed in Form
View when a processing key is pressed. Table View is used for selection purposes only.
Example 1
 input using MEMBERS into "TEMPMEMBER" .

 for RESERVATIONS with (MEMBER ID =

 TEMPMEMBER MEMBER ID) ;

 list records

 RESERVATION ID ;

 TOTAL DUE ;

 DATE .

 end

This script tells DataEase: (1) Display the MEMBERS form, (2) when the user selects a
specific MEMBERS record and presses F2, store that record in memory (using the name
TEMPMEMBER to reference it, (3) find all the RESERVATIONS records with the same
MEMBER ID as the MEMBER ID in the TEMPMEMBER record, and (4) for each related
reservation, list the RESERVATION ID, the TOTAL DUE, and the RESERVATION DATE. The
output from this script might look as follows:

Reservation ID Total Due Reservation Date
00164 $2780.00 08/17/92
00312 $3150.00 04/30/93
00515 $2942.00 12/20/93

Example 2
 while current status not = 1 do

 input using MEMBERS into "TEMPMEMBER" .

 case (current status)

 value 1 : exit .

 value 2 : enter a record in MEMBERS

 copy all from TEMPMEMBER .

 value 3 : modify records in MEMBERS with

 (MEMBER ID = TEMPMEMBER MEMBER ID)

 copy all from TEMPMEMBER .

 value 4 : delete records in MEMBERS with

 (MEMBER ID = TEMPMEMBER MEMBER ID) .

 end

 end

The script in Example 2 tells DataEase: (1) Display the MEMBERS form, (2) each time the
operator enters a record and executes a processing action (e.g., Edit>>Delete), check the
value of the current status variable. If current status =1 (the user chose File>>Close when the
input using record was on the screen), stop script processing without entering a record in the
MEMBERS table and close the procedure. If current status = 2 (the user chose Edit>>Save

© DataEase International Ltd

258

As New Record when the input using record was on the screen), copy the input using record
into the MEMBERS table.
If current status = 3, (the user chose Edit>>Save when the input using record was on the
screen), modify the record in the MEMBERS table with a MEMBER ID (a Unique field) that is
the same as the MEMBER ID on the input using record. If current status = 4, (the user chose
Edit>>Delete when the input using record was on the screen), delete the record in the
MEMBERS table with a MEMBER ID (a Unique field) that is the same as the MEMBER ID on
the input using record, and (3) display the MEMBERS form again so the user can enter,
modify, or delete another record.
Example 3
 while current status not = 1 do

 input using MEMBERS into "TEMPMEMBER" .

 case (current status)

 value 1 : exit .

 value 2 : if TEMPMEMBER MEMBER ID <= 20000 then

 enter a record in MEMBERS

 copy all from TEMPMEMBER .

 else

 message " Invalid ID. Re-enter the record. " .

 end

 others : message " You are not authorized to

 modify or delete records. " .

 end

 end

This script tells DataEase: (1) Display the MEMBERS form, (2) each time the user enters a
record and presses a processing key, check the value of the current status variable. If current
status = 1, stop script processing without entering a record in the MEMBERS table. If current
status = 2, verify that a valid MEMBER ID (<= 20000) was entered in the input using record. If
it is valid, copy the input using record into the MEMBERS table. If it is not valid, display an
error message. If current status =3or4, display a message telling the user that he/she is only
authorized to enter records, and (3) display the MEMBERS form again so the user can enter
another record.

Using the input using Command with Multiforms
When using the input using command on a Multiform, DataEase treats Main forms and
Subforms differently. If you enter, modify, or delete a Main form record, the information is
copied into the specified temporary form where it can be validated and processed by the script.
If you enter or modify a Subform record, however, the new or modified record is entered
directly into the Subform in the database. This is because DataEase is unable to hold all of the
entered or modified Subform records in memory (up to 5000 Subform records can be entered
or modified at once) and still continue processing the script.
If the user chooses Edit>>Save As New Record to enter a Multiform record, you can use
enter a record to enter the record into the Main form (the Subform records were automatically
entered when the user pressed F2). If the script tests the Main form for validity (e.g., MEMBER
ID >= 20000 in Example 3) and it fails, you must use the delete records command to remove
the Subform records that were entered.

© DataEase International Ltd

259

If the user chooses Edit>>Save to modify a Multiform record, you can use the modify records
command to modify the Main form record (the Subform records are automatically modified). If
the script tests the Main form for validity (e.g., MEMBER ID >= 20000 in Example 3) and it
fails, it is up to the user to remember which Subform records were modified and then go back
to the Subform and undo the modifications. DataEase cannot automatically undo modified
Subform records.
If you delete a Multiform record using the input using command, the records are not directly
deleted from the table. You must use the script to verify that a valid record was entered and
then use the delete records command to explicitly delete the appropriate Main and Subform
records.
Example 4
 while current status not = 1 do

 input using RESERVATIONS into "TEMPRESV" .

 case (current status)

 value 1 : exit .

 value 2 :

 if TEMPRESV RESERVATION ID <= 50000 then

 enter a record in RESERVATIONS

 copy all from TEMPRESV .

 else

 message " Invalid ID. Re-enter the record. " .

 delete records in RESERVATION DETAIL

 with (RESERVATION ID =

 TEMPRESV RESERVATION ID) .

 end

 others : message " You are not authorized to

 modify or delete records. If you have

 modified Subform records, you must

 manually delete the modifications. " .

 end

 end

This script tells DataEase: (1) Display the RESERVATIONS form, (2) each time the user
enters a record and presses a processing key, check the value of the current status variable. If
current status = 1, stop script processing without entering a record in the RESERVATIONS
table. If current status = 2, verify that a valid RESERVATION ID was entered in the input using
record. If the RESERVATION ID is valid, copy the input using record into the RESERVATIONS
table. If the RESERVATION ID is not valid, display an error message and delete the records
that were automatically entered in the Subform (RESERVATION DETAIL). If current status = 3
or 4, display a message telling the user that he/she is only authorized to enter records, and (3)
display the RESERVATIONS form again so the user can enter another record.

© DataEase International Ltd

260

install application
Type
Control Command
Purpose
The install application command lets you copy the documents and data from another
DataEase application into the current application. You can also use this option to convert and
install documents and data created in another database or spreadsheet program.
The install application command functions like choosing the Application>>Utilities>>Install.
Syntax
install application "[INSTALLATION FILENAME]" .

The filename that follows the install application command is the name of the Installation
Command file containing specific instructions about the documents and data to be installed.
This filename must be enclosed in quotation marks and must contain eight or fewer characters
with no intervening spaces. Although it is not necessary to include the filename extension,
DataEase automatically looks for a file with the extension .DIW.
If you want DataEase to prompt the user for the Installation Command filename when the
procedure is run (when processing reaches the install application command), omit the filename
from the script. You still must include a pair of quotation marks even if you omit the filename.
LAN
On a LAN (Local Area Network), if another user is currently using any resource required by the
install application command, DataEase displays a Resource Conflict message. While this
message is displayed, DataEase automatically tries to execute the command at brief intervals.
When the required resource becomes available, DataEase automatically resumes processing
and executes the rest of the procedure.
Example

install application "A: CATALOG" .

run procedure "MAILING LIST" .

This script tells DataEase: (1) Install the CATALOG application from the disk in drive A: into
the current application, and (2) when the new application is installed, run the MAILING LIST
procedure.

© DataEase International Ltd

261

installment
Type
Financial Function
Purpose
The installment function calculates the periodic installment payment required for a financial
transaction given the presentvalue, futurevalue, interest rate, and number of payment periods.
Syntax
installment(presentvalue, futurevalue, rate, periods)

Returns
A numeric value (the installment payment amount).
Usage
If the installment payment increases the value of the investment (e.g., an annuity), the numeric
value returned by the function is expressed as a positive amount. If the payment decreases the
value of the investment (e.g., loan amortization), the numeric value returned by the function is
expressed as a negative amount. The interest rate, installment payments, and time periods
must be based on the same terms. For example, if payments are made monthly on a five-year
loan, the number of periods is (12 * 5) or 60. The interest rate must be expressed in the same
terms (the monthly interest rate is the annual rate /12). When typing fractions like 10 / 12,
DataEase requires that you type a space before and after the / division symbol.
Example 1
installment(15000, 0, 10 / 12, 60)

Returns:-318.71

This example calculates the monthly installment payment required to pay off a $15,000 loan in
5 years at an annual interest rate of 10%.

Example 2

installment(0, 15000, 10 / 12, 60)

Returns:193.71

This example calculates the monthly installment amount required to accumulate $15,000 in 5
years at an annual interest rate of 10%.

Note: DataEase financial functions are derived from the formula shown below. (The double
asterisks (meaning "raise to the power") cannot be used in a script).

futurevalue = principal * ((1 + (rate/100))) ** periods) +
(installment/(rate/100)) * (((1 + (rate/100)) ** periods) - 1)

© DataEase International Ltd

262

item (Statistical Operator)
Type
Statistical Operator
Purpose
The item statistical operator tells DataEase to display the specified field value from each
processed record in addition to any specified statistics. The result appears as a list item in the
detail area of a procedure's output.
Syntax
FIELDNAME : item [other statistical operators] ;|.

Usage
When you create a report using Query by Model, each specified field value is automatically
included in the report output. In a similar way, when you generate report output using a DQL
procedure, if no other statistics are specified for a field, the field value is automatically included
in the report output. However, if statistics are specified on a field, the field value is included in
the output only if the field name is followed by the item operator.
There is an important difference between the item statistical operator and the item conditional
statistical operator (described on the following page). The item statistical operator tells
DataEase to include the list item in the report output when other statistics are specified. The
item conditional statistical operator tells DataEase to evaluate a comparison and return a yes
or no answer indicating if the comparison is true or not.
Example
 for MEMBERS ;

 list records

 LAST NAME in order ;

 TOTAL DUE : item min max sum .

 end

This script tells DataEase: (1) Process all the MEMBERS records in alphabetical order by
LAST NAME, (2) list each member's TOTAL DUE (item), (3) list the smallest TOTAL DUE
(min), (4) list the largest TOTAL DUE (max), and (5) list the total of all the TOTAL DUE
amounts combined (sum).
The output from this script might look as follows:

Last Name Total Due
Adams $85.00
Albert $120.00
Anders $120.00
Andersen $70.00
Anderson $115.00
... ...
Minimum Total Due $35.00
Maximum Total Due $280.00
Sum Total Due $18,190.00

© DataEase International Ltd

263

item (Conditional Statistical Operator)
Type
Conditional Statistical Operator
Purpose
The item conditional statistical operator returns a yes or no answer indicating if the specified
comparison is true or false.
Syntax
COMPARISON STATEMENT : item [other conditional statistical operators
] ;|.

Usage
In a script, the item operator is placed after a list item that is compared to a specified value.
The item operator is separated from the comparison by a colon.
There is an important difference between the item statistical operator (described on the
preceding page) and the item conditional statistical operator. The item statistical operator tells
DataEase to include the list item in the report output when other statistics are specified. The
item conditional statistical operator tells DataEase to evaluate a comparison and return a yes
or no answer indicating if the comparison is true or not.
Example
 for MEMBERS ;

 list records

 LAST NAME in order ;

 TOTAL DUE : item min max sum ;

 TOTAL DUE > 100 : item .

 end

This script tells DataEase: (1) Process all the MEMBERS records in alphabetical order by
LAST NAME, (2) list each member's TOTAL DUE (item), (3) list the smallest TOTAL DUE
(min), (4) list the largest TOTAL DUE (max), (5) list the total of all the TOTAL DUE amounts
combined (sum), and (6) for each member specify a yes or no answer indicating if the
member's TOTAL DUE is greater than $100 (item conditional statistical operator).
Although the fourth line in the script tells DataEase to include the TOTAL DUE value in the
report output, you must repeat the fieldname as part of the comparison statement to generate
the YES or NO data in the output.
The output from this script might look as follows:
Last Name Total Due Total Due over $100
Adams $85.00 NO
Albert $120.00 YES
Anders $120.00 YES
Andersen $70.00 NO
Anderson $115.00 YES
...

Minimum Total Due $35.00
Maximum Total Due $280.00
Sum Total Due $18190.00

© DataEase International Ltd

264

jointext
Type
Text Function
Purpose
The jointext function combines two separate text values into one.
Syntax
jointext(TEXT VALUE1, TEXT VALUE2)

Returns
A text value up to 255 characters in length.
Usage
When two text values are joined, leading spaces are maintained but trailing spaces are
deleted. To join three or more fields, you can use additional jointext functions as either or both
parameters.
Examples
jointext("Sapph" , "ire")

Returns: Sapphire
jointext(jointext("Sapph" , "ire") , "International")

Returns: Sapphire International.

In the above example, there is a space at the start of the string International.

jointext(PRODUCT , " for Windows")

Returns: DataEase for Windows

In the above example, there is a space at the start of the string for Windows. The PRODUCT
field holds the value DataEase.

© DataEase International Ltd

265

julian
Type
Date Function
Purpose
The julian function converts a date value to a Julian date.
Syntax
julian(DATE VALUE)

Returns
A five-digit integer in the format YYDDD.
Usage
YY are the last two digits of the year. DDD is the position of the day in the year (with January
1st = 001; and December 31 = 365, except in leap year when it is 366).
Examples
julian(07/04/99)

Returns: 99185

julian(12/31/99)

Returns: 99365

© DataEase International Ltd

266

lastc
Type
Text Function
Purpose
The lastc function extracts a specified number of characters from the end (right) of a text value.
Syntax
lastc(TEXT VALUE, n)

Returns
A text value n characters in length.
Usage
lastc(FIELDNAME, 1) returns the last character in the field. Trailing spaces are ignored. If
there are n or fewer characters in the field, lastc returns the original text value.
Examples
lastc("DataEase" , 4)

Returns: Ease

lastc("Club ParaDEASE" , 4)

Returns: EASE

lastc(FIRST NAME, 4)

Returns:The last four characters in the FIRST NAME field for every record that is processed. If
the FIRST NAME field contains the value Roger, the function returns oger.

© DataEase International Ltd

267

lastfirst
Type
Text Function
Purpose
The lastfirst function converts a text value from the format: First Name [M.] Last Name to the
format: Last Name, First Name [M.].
Where [M.] is an optional middle initial.
Syntax
lastfirst(TEXT VALUE)

Returns
A text value.
The contents of the field are rearranged so that the last word (i.e.,the last name) becomes the
first word in the returned value. A comma is automatically inserted after the last name.
Usage
The name of this function and the firstlast function refer to the format in which the names are
stored in a single field.
Examples
lastfirst(Susan B. Anthony)

Returns: Anthony, Susan B.

lastfirst(T.S. Eliot)

Returns: Eliot, T.S.

lastfirst(FULL NAME)

Returns:The value in the FULL NAME field in the format shown above for every record that is
processed. If a record contains the value Roger Birnbaum in the FULL NAME field, the
function returns Birnbaum, Roger.

© DataEase International Ltd

268

lastw
Type
Text Function
Purpose
The lastw function extracts a specified number of words from the end (right) of a text value.
Syntax
lastw(TEXT VALUE, n)

Returns
A text value n words in length.
Usage
lastw(FIELDNAME, n) returns the last n words in the field including intervening spaces and
punctuation symbols. If there are n or fewer words in the field, lastw returns the original text
value.
Examples
lastw("Sapphire International Ltd." , 2)

Returns: International Ltd.

lastw("Club ParaDEASE" , 1)

Returns: ParaDEASE

lastw(STREET, 2)

Returns:The last two words in the STREET field for every record that is processed. If a record
contains the value "540 Avenida de los Delfines" in the STREET field, the function returns "los
Delfines".

© DataEase International Ltd

269

length
Type
Text Function
Purpose
The length function counts the number of character positions in a text value.
Syntax
length(TEXT VALUE)

Returns
An integer value.
Usage
The length function counts all characters, including leading and trailing spaces.
Examples
length("Sapphire International Ltd.")

Returns: 27

length("Columbus Island")

Returns: 15

length(COMPANY NAME)

Returns: The number of characters in the COMPANY NAME field for every record that is
processed. If the COMPANY NAME field contains the value Club ParaDEASE, Inc., the
function returns20.

© DataEase International Ltd

270

list records
Type
Processing Command
Purpose
The list records command tells DataEase which items to display in the procedure output for
each record processed by a script. These items are called list items. Although the most
common list item is a fieldname, a list item can also be a constant, a variable, or any other
expression you want to include in the report output.
Syntax
for TABLENAME | RELATIONSHIP

 [with selection criteria] ;

 list records

 FIELDNAME |VARIABLE NAME | LITERALS ;|.

end

list records [in FORMNAME | RELATIONSHIP

 [named "UNIQUE RELATIONSHIP NAME"]

 [with(selection criteria)]]

Usage
Each list item must be followed by a semicolon except the last, which is followed by a period.
To sort, group, or generate statistics on a list item specified in a list records command, insert
the appropriate operator after the list item. You cannot list or modify more than 255 fields in a
single DQL Procedure.
Example 1
 for MEMBERS ;

 list records

 STATE in groups ;

 LAST NAME in order ;

 TOTAL DUE : item min max sum .

 end

This script tells DataEase: (1) Process all the MEMBERS records with the same value in the
STATE field together as a group, (2) display the group identifier (STATE) once at the
beginning of each group, (3) within each group, arrange the members in alphabetical order by
LAST NAME, (4) list each member's TOTAL DUE (item), (5) list subtotals of each specified
statistic for each STATE group (in groups with group-totals), (6) list the smallest TOTAL DUE
(min), (7) list the largest TOTAL DUE (max), and (8) list the sum of all the TOTAL DUE
amounts combined (sum). The output might look as follows:

State Last Name Total Due
...
KY Bouchard $100.00

Denofsky $70.00

© DataEase International Ltd

271

Steiner $115.00
Group Total $285.00

LA Orsini $85.00
Rodriguez $100.00
Simpson $85.00
Group Total $270.00

...

Minimum Total Due $280.00
Maximum Total Due $35.00
Sum Total Due $18,190.00

Example 2
Although list records is usually used with the for command to list data, you can also use list
records to list text literals, values stored in variables, and other values. For example, the script
below prints Club ParaDEASE cruise boarding passes. It lists a text literal and values stored
in a variable, joined together using the jointext function:

 define temp "CRUISE_TICKET_NUM" Number .

 assign temp CRUISE_TICKET_NUM := 0 .

 while temp CRUISE_TICKET_NUM < 1000 do

 temp COUNTER := temp CRUISE_TICKET_NUM + 1 .

 list records

 jointext(" Boarding Pass No. " , CRUISE_TICKET_NUM) .

 end

The example above tells DataEase to: (1) Create a temporary variable named
CRUISE_TICKET_NUM and to assign it an initial value of zero, (2) evaluate the condition
following the word while, and if the value of CRUISE_TICKET_NUM is less than 1000, execute
the actions following the word do until the end command, and (3) reevaluate the condition
(CRUISE_TICKET_NUM <1000), and if it is still true, repeat the actions until the condition
becomes false.
Each time the actions are executed, the list records command tells DataEase to print the text
string, "Boarding Pass No.", followed by the current value in the CRUISE_TICKET_NUM
variable. Notice that the text string "Boarding Pass No." includes a single trailing space so the
ticket number prints in the correct location.
The output for this procedure might look as follows:

Boarding Pass No. 1
Boarding Pass No. 2
Boarding Pass No. 3
Boarding Pass No. 4

© DataEase International Ltd

272

lock
Type
Processing Command
Purpose
The lock command is functional only when using DataEase on a LAN (local area network). The
lock command prevents users from viewing, modifying, adding, or deleting data in forms and
records being used by a report/procedure.
The lock command overrides the default multi-user locking rules assigned by the database
administrator. To override the default locking rules, the first statement of the script must be
either lock all files or unlock all files. If neither of these commands appears at the start of the
script, the default locking rules govern LAN functioning until a lock or unlock command
appears in the script.
All lock and unlock commands are automatically terminated at the end of a script.
Syntax
lock all files .

lock file TABLENAME .

lock selected record [shared|exclusive] .

Usage
The lock all files command locks all tables referenced by the script. Users can view records in
the locked tables but cannot add, delete or modify data in these tables.
The lock file command locks a specified table for the duration of the procedure or until the
same table is specified in an unlock command. When an individual table or record is locked,
you must also specify the type of lock (shared or exclusive). Shared lets other users view
records in the locked table but prohibits those users from entering, modifying, or deleting
records in that table. Exclusive prevents all access to the locked table, including viewing
records.
The lock selected record command functions like lock file except it only locks the record that is
currently being processed. When DataEase finishes processing a record, it is automatically
unlocked. Use this command only within a for command loop (see Example 2). If you use it
outside a for loop, no records are selected; therefore nothing is locked.
Example 1
 lock file RESERVATIONS shared .

 for MEMBERS with

 (sum of RESERVATIONS TOTAL DUE > 3000) ;

 list records

 LAST NAME ;

 TOTAL DUE .

 end

This script tells DataEase: (1) Lock the RESERVATIONS table so other users can view
records but cannot add, delete or modify RESERVATIONS records during the processing of
this script, (2) select all the MEMBERS records whose related RESERVATIONS records have
a combined TOTAL DUE greater than $3000, and (3) for each record selected, list the
member's LAST NAME and TOTAL DUE.
Notice that locking the RESERVATIONS table during the processing of this report prevents
other users from entering new records that might alter the sum of calculation.

© DataEase International Ltd

273

Example 2
 for MEMBERS ;

 lock selected record shared .

 list records

 LAST NAME ;

 TOTAL DUE ;

 mean of RESERVATIONS TOTAL DUE .

 end

This script tells DataEase: (1) Select all the MEMBERS records, (2) lock each record as it is
selected so other users can view it but cannot add, delete or modify the record while it is being
processed, and (3) for each record selected, list the member's LAST NAME, TOTAL DUE, and
the mean TOTAL DUE of all the related RESERVATIONS records.
In this example, all MEMBERS records can be modified except the record that is currently
being processed.

© DataEase International Ltd

274

lock db (lock database)
Type
Control Command
Purpose
The lock db command is only functional when using DataEase on a LAN (local area network).
This command completely prohibits other users from accessing the current application.
Syntax
lock db .

Usage
The lock db command can be used to preserve the integrity of data during an extended Control
procedure or to prevent a conflict when installing a new or revised application into the
application.
The lock db Control command differs from the lock Processing command in several ways:
It locks the whole application rather than specified tables or individual records.
There is no shared option for the lock db command: no other user can view records or access
any table in the application for any purpose.
The lock db command is not automatically terminated at the end of the procedure. Once an
application is locked by the lock db command, it remains locked until an unlock db command is
executed, or the user who initiated the lock db command exits from DataEase.
LAN
On a LAN (local area network), if another user is currently using any resource required by the
lock db command, DataEase displays a Resource Conflict message. While this message is
displayed, DataEase automatically tries to execute the command at brief intervals.
When the required resource becomes available, DataEase automatically resumes processing
and executes the rest of the procedure.
Example

lock db .

run procedure "ARCHIVE OLD RESERVATIONS" .

run procedure "DELETE INACTIVE MEMBERS" .

run procedure "UPDATE ACTIVE MEMBERS" .

unlock db .

This script tells DataEase: (1) Lock the current application, (2)run the ARCHIVE OLD
RESERVATIONS procedure, (3) run the DELETE INACTIVE MEMBERS procedure, (4) run
the UPDATE ACTIVE MEMBERS procedure, and (5) unlock the application.

© DataEase International Ltd

275

log
Type
Scientific Function
Purpose
The log function computes the natural base e logarithm of a numeric value.
Syntax
log(NUMERIC VALUE)

Returns
A numeric value.
Usage
The numeric value in a Scientific function can be a constant value (as shown below), a
variable, a field value, or an expression.
Examples
log(3)

Returns: 1.098612

log(0.5)

Returns -0.693147

log10
Type
Scientific Function
Purpose
The log10 function computes the common base 10 logarithm of a numeric value.
Syntax
log10(NUMERIC VALUE)

Returns
A numeric value.
Usage
The numeric value in a Scientific function can be a constant value (as shown below), a
variable, a field value, or an expression.
Examples
log10(3)

Returns: 0.477121

log10(0.5)

Returns: -0.301031

© DataEase International Ltd

276

lower
Type
Text Function
Purpose
The lower function converts each letter in a specified text value into lower-case type.
Syntax
lower(TEXT VALUE)

Returns
The specified text value with all the letters in lower case.
Examples
lower("DataEase")

Returns: dataease

lower("Club ParaDEASE")

Returns: club paradease

lower(LAST NAME)

Returns: The value in the LAST NAME field in lower-case type for every record that is
processed. If a record contains the value Birnbaum in the LAST NAME field, the function
returns birnbaum.

© DataEase International Ltd

277

lowest of
Type
Relational Statistical Operator
Purpose
The lowest of operator finds the smallest value in the specified field in all matching records in a
related table. The result can appear as a list item in the detail area of a report or as a statistic
at the end of each group or at the end of the report.
Syntax
lowest of TABLENAME|RELATIONSHIP

[named "UNIQUE RELATIONSHIP NAME"]]

[with (selection criteria)] FIELDNAME ;|.

Returns
A value of the same type as the specified field. If a Text field is specified, DataEase returns the
lowest ASCII value. If a Choice field is specified, DataEase returns the value in the lowest
numbered choice (not necessarily the lowest ASCII value).
Usage
There's an important difference between the statistical operator min and the relational
statistical operator lowest of. min returns the lowest value in the specified field among the
records being processed. lowest of returns the lowest value in the specified field among the
records related to the records being processed.
Example
 for MEMBERS ;

 list records

 LAST NAME in order ;

 lowest of RESERVATIONS TOTAL DUE .

 end

This script tells DataEase: (1) Process all the MEMBERS records and list each member's
LAST NAME in alphabetical order, (2) for each MEMBERS record selected, find the related
records in the RESERVATIONS table (those that have the same MEMBERID), and (3) list the
lowest TOTAL DUE value for each of the matching RESERVATIONS records.
The output from this script arranged in alphabetical order by LAST NAME, might look as
follows:
Last Name Lowest of Reservations Total Due
Adams $2740.00
Albert $4100.00
Anders $3690.00
Anderson... $1720.00...

If you also want to include the smallest TOTAL DUE among this group of reservations, change
the fourth line of the query to read:

lowest of RESERVATIONS TOTAL DUE : item min .

© DataEase International Ltd

278

max
Type
Statistical Operator
Purpose
The max operator finds the highest value in a specified field among all the records that are
processed. The result appears in the statistical summary areas of the report.
Syntax
VALUE : max [other statistical operators] ;|.

Returns
A value of the same type as the specified value. If the specified value is a Text field, max
returns the highest ASCII value.
Usage
max finds the highest value in the specified field among the records being processed.
There's an important difference between the statistical operator max and the relational
statistical operator highestof. max finds the highest value in the specified field among the
records being processed. highest of finds the highest value in the specified field among the
records related to the records being processed.
Example
 for MEMBERS with TOTAL DUE > 150 ;

 list records

 LAST NAME in order ;

 TOTAL DUE : item max sum .

 end

This script tells DataEase: (1) Process all the MEMBERS records that have a value greater
than $150 in the TOTAL DUE field, (2)list the members by LAST NAME in alphabetical order,
and (3) list each member's TOTAL DUE and include the largest TOTAL DUE amount and the
sum of all the TOTAL DUE amounts in the report output.
The output from this script might look as follows:

Last Name Total Due
Archer $155.00
Christino $280.00
Forrest $175.00
Jones $175.00
Morelli $155.00
Perrault... $215.00...
Max Total Due: $280.00
Sum Total Due: $2050.00

© DataEase International Ltd

279

mean
Type
Statistical Operator
Purpose
The mean operator finds the average value in a specified field among all the records that are
processed. The result appears in the statistical summary areas of the report.
Syntax
VALUE : mean [other statistical operators] ;|.

Returns
A numeric value.
Usage
The mean operator calculates the average of all the values in the specified field (the sum of
the values divided by the number of values processed). Blank fields are ignored in the
calculation. Fields that have a value of zero are included in the calculation.
There's an important difference between the statistical operator mean and the relational
statistical operator mean of. mean finds the average value in the specified field among the
records being processed. mean of finds the average value in the specified field among the
records related to the records being processed.
Example
 for MEMBERS with TOTAL DUE > 150 ;

 list records

 LAST NAME in order ;

 TOTAL DUE : item mean sum .

 end

This script tells DataEase: (1) Process all the MEMBERS records that have a value greater
than $150 in the TOTAL DUE field, (2) list the members by LAST NAME in alphabetical order,
and (3) list each member's TOTAL DUE and include the mean TOTAL DUE amount and the
sum of all the TOTAL DUE amounts in the report output.
The output from this query might look as follows:

Last Name Total Due
Archer $155.00
Christino $280.00
Forrest $175.00
Jones $175.00
Morelli $155.00
Perrault... $215.00...
Mean Total Due: $186.36
Sum Total Due: $2050.00

© DataEase International Ltd

280

mean of
Type
Relational Statistical Operator
Purpose
The mean of operator calculates the average value in a specified field in all matching records
in a related table. The result can appear as a list item in the detail area of a report or as a
statistic in the summary area at the end of each group or at the end of the report.
Syntax
mean of TABLENAME|RELATIONSHIP

[named "UNIQUE RELATIONSHIP NAME"]

[with (selection criteria)] FIELDNAME ;|.

Returns
A numeric value.
Usage
The mean of operator calculates the average of all the values in the specified field (the sum of
the values divided by the number of values processed). Blank fields are ignored. Fields that
have a value of zero are included in the calculation.
There's an important difference between the statistical operator mean and the relational
statistical operator mean of. mean finds the average value in the specified field among the
records being processed. mean of finds the average value in the specified field among the
records related to the records being processed.
Example
 for MEMBERS ;

 list records

 LAST NAME in order ;

 mean of RESERVATIONS TOTAL DUE .

 end

This script tells DataEase: (1) Process all the MEMBERS records and list each member's
LAST NAME in alphabetical order, (2)for each MEMBERS record processed, find all the
related records in the RESERVATIONS table (those that have the same MEMBERID), and (3)
list the mean TOTAL DUE for each member from the set of related RESERVATIONS records.
The output from this script might look as follows:

Last Name Mean of Reservations Total Due
Adams $2780.00
Albert $4430.00
Anders $4055.00
Anderson... $1910.00...

If you also want to include the mean TOTAL DUE among this group of reservations, change
the fourth line of the script to read:

mean of RESERVATIONS TOTAL DUE : item mean .

© DataEase International Ltd

281

message
Type
Procedural Command
Purpose
The message command tells DataEase to display a specified message. The message text can
be 255 characters in length. You can tell DataEase to display the message on the status bar or
in a standard Windows message box. Each message can be programmed to accept user
input. DataEase provides five optional parameters (described below) that let you customize the
message window.
Syntax
message "MESSAGE TEXT" [window | pause] ["MESSAGE TITLE TEXT"];
[Icon]; [Buttons]; [Beep] .

Usage
Message text can contain a field name, current system variable, a relational operator, a
function, and/or a text constant enclosed in quotation marks. To divide the message into
multiple lines, insert a vertical bar character (|) to indicate a new line (see Example 1). If you
do not specify the window or pause parameter, DataEase displays the message on the status
bar by default.
When you choose window, DataEase displays the message text in a standard Windows
message box. DataEase automatically pauses and the user is required to press any key to
acknowledge the message to resume processing. . Pause also displays a window, and is
included for compatibility with previous versions of DataEase.
If you include the message title text parameter, DataEase displays the entered text on the
message box title bar. If you exclude this parameter, DataEase displays DataEase Message
as a default title.
To include the icon parameter, specify a number which represents one of the Windows icons
shown in the table below.

Message Command Icon Parameters
Icon Numeric Value Icon Name

1 Information Icon
2 Exclamation Icon
3 Stop Icon
4 Question Icon

If you exclude the icon parameter, DataEase automatically displays the Windows information
icon by default.
To include the buttons parameter, specify a number which represents one of the button
combinations shown in the table below.

© DataEase International Ltd

282

Message Command Button Parameters

To display this button combination... ...enter this number as the buttons parameter.

OK, CANCEL 1
RETRY, CANCEL 2
ABORT, RETRY, IGNORE 3
YES, NO 4
YES, NO, CANCEL 5

If you exclude the buttons parameter, DataEase displays the OK, CANCEL button combination
by default.
When the user clicks a button displayed in the message box, DataEase returns a value to the
current status system-defined variable. The current status values associated with each of the
buttons are displayed in the table below.

Message Command Current Status Values
When you
click this button... ...DataEase Returns this value to the current status variable.
OK 1
CANCEL 2
ABORT 3
RETRY 4
IGNORE 5
YES 6
NO 7

You can use the value stored in the current status variable to perform conditional processing of
the remainder of your script as shown in Example 2.
To include an audible warning sound, specify a number which represents one of the standard
Windows beep sounds, as shown in the table on the following page.

© DataEase International Ltd

283

Message Command Beep Parameters
To play the sound associated with this
Windows icon...

...enter this number.

System Default 1
Asterisk 2
Information 3
Exclamation 4
Question 5
Hand 6
Stop 7
OK 8

If you exclude the beep parameter, DataEase does not provide a default.
When you choose pause, the message is displayed on the status bar. If you include any of the
optional parameters with the pause option, DataEase displays an error when you choose
Script>>Check DQL.

Example 1
message "Sorry. A high security level is

required|to run this procedure" window .

This message is displayed in a Windows message box. There are line breaks after the words
Sorry and required. By default, DataEase includes the title DataEase Message, the Windows
information icon, and the OK, CANCEL button combination.

© DataEase International Ltd

284

Example 2
 for MEMBERS ;

 if EXPIRATION DATE < currentdate then

 message jointext (" Delete " , jointext

 (LAST NAME , " record? ")) window " Delete

 Inactive Member Records " ; 4; 5; 4.

 if current status = 6 then-- Yes button

 delete records.

 message " Record Deleted! " pause .

 else

 if current status = 7 then-- No button

 message " Finding next record. " pause .

 else

 if current status = 2 then-- Cancel button

 message " Cancelling procedure. " pause .

 exit .

 end

 end

 end

 end

 end

This example tells DataEase: (1) Process all the records in the MEMBERS table. (2) Check
each record to see if the membership has expired as indicated by the EXPIRATION DATE. If
the membership has lapsed, display the message: "Delete LAST NAME record?" in a message
box that includes the message title "Delete Inactive Member Records", the Question icon, the
YES, NO, CANCEL button combination, and plays the exclamation sound. (3) If The user
clicks YES, delete the current record and display the message "Record Deleted!" on the status
bar, (4) If the user clicks NO, abandon the current record and display the message "Finding
next record." on the status bar. (5) If The user clicks CANCEL, display the message
"Cancelling procedure." on the status bar and exit the script.

© DataEase International Ltd

285

midc
Type
Text Function
Purpose

The midc function extracts a specified number of characters from the middle of a text value.
Syntax
midc(TEXT VALUE, m, n)

 …where;
m is the starting position in the text value and
n is the number of characters to extract.
Returns
A text value n characters in length.
Usage
midc(FIELDNAME, m, n) returns n characters beginning at character position m (inclusive).
Spaces and punctuation symbols are included.
Examples
midc("DataEase" , 4, 3)

Returns: aEa

midc("Club ParaDEASE" , 6, 3)

Returns: Par

midc(LAST NAME, 4, 2)

Returns: Two characters beginning at the fourth character position in the LAST NAME field for
every record that is processed. If a record contains the value Birnbaum in the LAST NAME
field, the function returns nb.

© DataEase International Ltd

286

midw
Type
Text Function
Purpose
The midw function extracts a specified number of words from the middle of a text value.
Syntax
midw(TEXT VALUE, m, n)

 …where
m is the starting position in the text value and
n is the number of characters to extract.
Returns
A text value n words in length.
Usage
midw(FIELDNAME, m, n) returns n words beginning at word number position m (inclusive).
Spaces and punctuation symbols are included.
Examples
midw("Sapphire International Ltd." , 2, 1)

Returns: International

midw("Club ParaDEASE Catalog" , 2, 2)

Returns: ParaDEASE Catalog

midw(STREET, 2, 3)

Returns: Three words beginning at the second word position in the STREET field for every
record that is processed. If a record contains the value "540 Avenida de los Delfines" in the
STREET field, the function returns "Avenida de los".

© DataEase International Ltd

287

min
Type
Statistical Operator
Purpose
The min operator finds the smallest value in a specified field among all the records that are
processed. The result appears in the statistical summary areas of the report.
Syntax
VALUE : min [other statistical operators] ;|.

Returns
A value of the same type as the specified value. If the specified value is a Text field, min
returns the lowest ASCII value.
Usage
There's an important difference between the statistical operator min and the relational
statistical operator lowest of. min returns the lowest value in the specified field among the
records being processed. lowest of returns the lowest value in the specified field among the
records related to the records being processed.
Example
 for MEMBERS ;

 list records

 LAST NAME in order ;

 TOTAL DUE : item min .

 end

This script tells DataEase: (1) Process all the MEMBERS records and list each member's
LAST NAME in alphabetical order, and (2) list each member's TOTAL DUE and include the
smallest TOTAL DUE amount in the report output.
The output from this script might look as follows:

Last Name Total Due
Archer $120.00
Christino $210.00
Forrest $75.00
Jones $95.00
Morelli $155.00
Perrault $185.00
Min Total Due: $75.00

© DataEase International Ltd

288

minutes
Type
Time Function
Purpose
The minutes function extracts the minutes from a time value expressed in a 24-hour format.
Syntax
minutes(TIME VALUE)

Returns
An integer value from 00 to 59.
Examples
minutes(12: 00: 00)

Returns: 00

minutes(23: 59: 00)

Returns: 59

© DataEase International Ltd

289

mod (modulus)
Type
Scientific Function
Purpose
The mod (modulus) function returns the remainder when one numeric value is divided by a
second numeric value. If both values are integers, an integer value is returned. Otherwise, a
decimal value is returned.
Syntax
mod(NUMERIC VALUE 1, NUMERIC VALUE 2)

Returns
A numeric value.
Usage
The numeric value in a Scientific function can be a constant value (as shown below), a
variable, a field value, or an expression.
Examples
mod(8, 3)

Returns: 2

mod(12.6, 1.6)

Returns: 1.4

© DataEase International Ltd

290

Modify Records
Type
Processing Command
Purpose
The modify records command modifies records in a specified table.
Syntax
modify records [in TABLENAME|RELATIONSHIP] [named "UNIQUE
RELATIONSHIP NAME"]] [with (selection criteria)] FIELDNAME :=
MODIFIED VALUE ;|.

Usage
The modify records command must specify the field values to be changed in the Target table.
The Target table may be the Primary table specified at the start of a for command, or a related
table specified within a for loop.
When you modify records in the Primary table, the keyword in is omitted and no punctuation is
used after the modify records command (see Example 1). If no selection criteria are specified,
all the records in the Primary table are modified.
When you modify records in a table other than the Primary table, the keyword in precedes the
table name, and the command ends with the appropriate punctuation mark (a semicolon or a
period - see Example 2). If no selection criteria are specified, all the records in the specified
table are modified.
Source data used to modify records may come from the Primary table, a Data-entry form,
system variable, or calculation. Alternatively, you can use the copy all from command to
specify a Source table from which to copy field data.
As data is entered in the Target table, automatic error checking is performed. Errors are
logged to an error file.
You cannot list or modify more than 255 fields in a single DQL Procedure.
Example 1
 for MEMBERS with (any RESERVATIONS TOTAL DUE > 3000) ;

 modify records

 TOTAL DUE := (TOTAL DUE - data-entry DISCOUNT) .

 end

This script tells DataEase: (1) Process all the MEMBERS records that have any related
RESERVATIONS record with a TOTAL DUE greater than $3000, and (2) modify each
MEMBERS record by subtracting the DISCOUNT amount entered in the Data-entry form from
the value in the TOTAL DUE field in the MEMBERS table.
Example 2
 for MEMBERS with STATE = "NY" ;

 modify records in RESERVATIONS

 TOTAL DUE := TOTAL DUE + NY SALES TAX .

 end

This script tells DataEase: (1) Process all the MEMBERS records that have NY in the STATE
field, and (2) for each MEMBERS record that is processed, find all the related records in the
RESERVATIONS table. Modify each related RESERVATIONS record by adding the NY
SALES TAX amount to the value in the TOTAL DUE field.

© DataEase International Ltd

291

month
Type
Date Function
Purpose
The month function extracts the month (1- 12) from a date value.
Syntax
month(DATE VALUE)

Returns
An integer value between 1 and 12
The date format selected using the International option in the Windows Control Panel changes
the date sequence but does not affect which value is returned by a Date function.
Examples
month(12/31/99)

Returns: 12 (North American format)

month(31/12/99)

Returns: 12 (European format)

month(99/12/31)

Returns: 12 (Metric format)

© DataEase International Ltd

292

named
Type
Relational Operator
Purpose
The named operator is used to give a unique name to each relationship based on different
selection criteria so DataEase can distinguish multiple relationships between the same two
tables.
Syntax
RELATIONSHIP named "UNIQUE RELATIONSHIP NAME" [with (selection
criteria)]

Usage
During a script, whenever you add or change the selection criteria of a relationship (predefined
or ad hoc), you create a new ad hoc relationship. If two tables are related by more than one
relationship, each of these relationships must be assigned a unique name, either on the
Relationships form or by using the named operator in a script, so DataEase can distinguish
between them.
A unique relationship name is an arbitrary name. The name you assign to the relationship is
analogous to the custom relationship name used on the Relationships form. It can be any
name you like as long as no other relationship in the script (or predefined relationship) has the
same name. The name is placed in quotes at the time it's first defined; no quotation marks are
used if the name appears in subsequent statements.
When you use the named operator to distinguish a relationship and specify its selection
criteria, the new criteria are added to any previously defined criteria, including the criteria on
which a predefined relationship was based. Thus, if you add new criteria to a relationship and
use the named operator to distinguish it, you don't need to restate all of the criteria that defines
the original relationship. Once a relationship is assigned a unique name, you can use the new
relationship name alone to reference it without restating the criteria.
Example 1
 for MEMBERS ;

 modify records in RESERVATIONS named "ACTIVE"

 with (DATE > 01/01/1999)

 TOTAL DUE := TOTAL DUE - data-entry DISCOUNT .

 delete records in RESERVATIONS named " OUTDATED "

 with (DATE < 01/01/1998) .

 end

This script tells DataEase: (1) Process all the MEMBERS records, (2) for each record
processed, find all the related RESERVATIONS records, (3)divide the related
RESERVATIONS records into two groups: one group named ACTIVE (dated after January 1st,
1999), and a second group named OUTDATED (dated before January 1st, 1998), (4)modify
the records in the ACTIVE relationship by subtracting the DISCOUNT value entered in the
Data-entry form from the RESERVATIONS TOTAL DUE, and (5)delete the records in the
OUTDATED relationship.
There is a predefined relationship between MEMBERS and RESERVATIONS. During this
script, we are creating two different ad hoc relationships between MEMBERS and
RESERVATIONS by adding selection criteria based on the value in the DATE field. The
named operator is used to assign a unique relationship name to each group of records so
DataEase can distinguish between these two relationships.

© DataEase International Ltd

293

Since DataEase continues to apply the match field criteria specified in the predefined
relationship between the MEMBERS and RESERVATIONS (that is, MEMBERS MEMBER ID =
RESERVATIONS MEMBER ID), you don't need to respecify this match criteria when each new
ad hoc relationship is named.
Subsequently, as long as the criteria remains unchanged, you can use the relationship name
alone without restating the relationship criteria. For example, if after modifying the records in
the ACTIVE relationship you want to list the RESERVATION ID and TOTAL DUE of each
ACTIVE reservation record, the script would look like this:
Example 2
for MEMBERS ;

 modify records in RESERVATIONS named "ACTIVE"

 with (DATE > 01/01/99)

 TOTAL DUE := TOTAL DUE - data-entry DISCOUNT .

 list records in ACTIVE

 RESERVATION ID in order ;

 TOTAL DUE .

end

© DataEase International Ltd

294

Nested Actions
Type
Concept
Purpose
A Nested Action is an action that is invoked by another action.
There are two types of nested actions: (1) A nested loop action performs the same series of
actions on each record that is processed (see Example 1), and (2) a nested conditional action
is most often used to select subgroups of records and perform different actions on each group
(see Example 2).
Example 1
 for MEMBERS ;

 for RESERVATIONS

 list records

 MEMBERS LASTNAME in groups ;

 RESERVATION ID ;

 TOTAL DUE .

 end

 end

This script tells DataEase to perform the same series of actions on each record selected by the
for command. In this example, the second for command, which retrieves the RESERVATIONS
records related to the MEMBERS record that is currently being processed, is nested within the
first for command.
Although DataEase does not require it, it is easier to follow the logic if you indent nested
actions as shown in these examples.
Example 2
 for RESERVATIONS ;

 if TOTAL DUE > 2000 then

 modify records in MEMBERS

 STATUS := PREFERRED .

 if DATE between 01/01/99 to current date then

 enter a record in CATALOG MEMBERS

 copy all from MEMBERS .

 end

 end

 end

This script tells DataEase to select two groups of RESERVATIONS records: (1)All the records
with an TOTAL DUE greater than $2000 (the related MEMBERS records get modified), and (2)
the records with an TOTAL DUE greater than $2000 and a DATE between the start of 1994
and today's date (the related MEMBERS records get modified and copied into the CATALOG
MEMBERS table).
In this example, the second if command, which selects a subgroup of the records selected by
the first if command, is nested within the first if command.

© DataEase International Ltd

295

not
Type
Comparison Operator
Purpose
The not operator reverses the meaning of any comparison operator it precedes (e.g., STATE
not = (equals) " NY" means any state except New York).
Syntax
VALUE 1 not comparison operator VALUE 2

Usage
The not operator's effect can often be accomplished by stating the comparison in a different
way. For example, < (less than) can be substituted for not >= (not equal or greater than).
Whenever possible, comparisons should be stated as a positive expression.
Examples
TOTAL DUE not > 500 ;

means the value in the TOTAL DUE field is less than or equal to 500.

STATE not = "NY" and STATE not = "NJ" ;

means any state except New York or New Jersey.

Caution
When you combine two or more comparisons using the not operator, you must use and in the
comparison. If you use or in conjunction with not, as shown below, every record in the file is
processed.

STATE not = "NY" or STATE not = "NJ" ;

In this example, records that do not meet one condition will meet the other condition.

© DataEase International Ltd

296

Operators
Type
Concept
Purpose
Operators are used to manipulate variables and to tell DataEase how to carry out certain
Processing and Control Procedures (such as in what order to process records, what statistics
to generate, etc.). DQL includes seven types of operators:
• Comparison Operators are used to compare two values and process a record depending

on the result of the comparison. Examples include <= (less than or equal to), < (less than), =
(equal to), > (greater than), >= (greater than or equal to), between, and not.

• Grouping/Sorting Operators tell DataEase how to group and sort records when you
process data using the list records command. Examples include in groups, in order, and in
reverse.

• Relational Operators all and any are used to list records related to the record currently
being processed. all tells DataEase to list all records related to the current record; any tells
DataEase to list only the first related record in the database.

• Statistical Operators summarize the values of a specified field for all records processed.
Examples include sum, mean, max, min, and std.dev.

• Conditional Statistical Operators summarize statistical information about a specific
condition that occurs in a set of records. Examples include count, percent, and item.

• Relational Statistical Operators summarize information about fields in a set of related
records. Examples include count of, highest of, lowest of, mean of, and sum of.

• General Operators include the arithmetic operators (*(asterisk) ,/ ,+ (addition) , and -
(subtraction)), the assignment operator (:=) used to assign a value to a field or variable,
and the logical operators (and and or) that let you select records based on multiple criteria,
and execute Procedural Commands based on more than one condition.

There is a separate entry for each individual operator in this language reference.

© DataEase International Ltd

297

or
Type
Logical Operator
Purpose
The or operator combines two sets of selection criteria or comparison statements.
Syntax
SELECTION CRITERIA 1 or SELECTION CRITERIA 2

Returns
The values in records that satisfy either of the selection criteria statements.
Usage
The or operator requires that a record meet either of the specified criteria to be processed (as
opposed to the and operator which requires that a record meet all the specified selection
criteria to be processed).
When selection criteria are combined with both the and and or operators in one statement, the
criteria must be enclosed in parentheses to clarify the meaning.
Examples

for MEMBERS with STATE = "NY" or TOTAL DUE > 200 ;

This statement tells DataEase: Process only those MEMBERS records that contain NY in the
STATE field or have a value greater than $200 in the TOTAL DUE field. A record is processed
if it satisfies either of these criteria.

for MEMBERS with (STATE = "NY" or STATE = "NJ")

 and TOTAL DUE > 200 .

This statement tells DataEase: Process only those MEMBERS records that contain either NY
or NJ in the STATE field and a value greater than $200 in the TOTAL DUE field.
In this case, only records that satisfy both sets of criteria are processed.
Caution
When you combine two or more comparisons using the not operator, you must use and in the
comparison. If you use or in conjunction with not, as shown below, every record in the file is
processed.

STATE not = "NY" or STATE not = "NJ" ;

In this example, records that do not meet one condition will meet the other condition.

© DataEase International Ltd

298

others
Type
Command component
Purpose
The others keyword is an optional component of the case command syntax. When processing
a case command, DataEase compares the expression that follows case to each of the
statements specified by the keyword value. If none of the specified value comparisons are
true, DataEase executes the actions specified after the keyword others. As soon as the actions
following any value or others statement are executed, processing passes to the first action
following the end command for the case statement.
Syntax
case (EXPRESSION)

value COMPARISON 1 :

ACTION SERIES 1 .

 [value COMPARISON 2 :

ACTION SERIES 2 .

.

.

value COMPARISON N :

ACTION SERIES N .]

[others :

DEFAULT ACTION SERIES .]

end

Usage
The case command requires a case expression, one comparison value, and an end command.
Subsequent value statements, actions, and the others keyword are optional. If others is used,
it must follow all the specified comparison values.
Example
 case (current user name)

 value "FRANK" :

 call menu "MAIN MENU" .

 value "CAROL" :

 run procedure "PRINT RESERVATIONS" .

 others :

 record entry "MEMBERS" .

 end

This script tells DataEase: (1) If the current user is Frank, display the ADMINISTRATION
menu, (2) if the current user is Carol, run the PRINT RESERVATIONS procedure, and (3) if
the current user is anyone other than Frank or Carol, display the MEMBERS Record Entry
form.

© DataEase International Ltd

299

output
Type
Procedural Command
Purpose
The output command is included solely for compatibility with previous versions of Dataease
that were unable to have multiple list records statements. The entry is included here for
completeness.
The output command tells DataEase which items to display in the procedure output for each
record processed by a scriptScript. The items you output can include a fieldname, constant
value, a variable or any other expression you want to include in the layout of your report.
Syntax
outputFIELDNAME | "TEXT" ;|. end

Usage
The output command lets you specify fields and/or text to be included in the report. Text values
must be enclosed in quotation marks. Each item listed in the output command must be
followed by a semicolon except the last, which is followed by a period. (.)
A script can contain any number of output commands. For each output command, DataEase
automatically creates a separate subform object in the body of the layout.
Example
 for EMPLOYEE ;

 list records

 FIRST NAME ;

 LAST NAME

 STATUS .

 if STATUS = exempt then

 output :

 401K ;

 HEALTH PLAN ;

 STOCK OPTIONS .

 end

 else

 output :

 ANNUAL BONUS ;

 OVERTIME RATE .

 end

 end

 end

This example tells DataEase: (1) Process every EMPLOYEE record, listing the first and last
name and employment status, (2) if the employee's status is exempt, output the values in the
401K, HEALTH PLAN, and STOCK OPTIONS fields, and (3) if the employee's status is
anything other than exempt (in this case hourly), output the values in the ANNUAL BONUS
and OVERTIME RATE fields.

© DataEase International Ltd

300

percent
Type
Conditional Statistical Operator
Purpose
The percent operator calculates the percentage of records that satisfy a condition specified by
a comparison of two values.
Syntax
CONDITION : percent [other conditional statistical operators]

Returns
A numeric value.
Example
for MEMBERS ;

 list records

 LAST NAME in order ;

 TOTAL DUE ;

 TOTAL DUE > 100 : item percent .

end

This query tells DataEase: (1) Process all the MEMBERS records and list each member's
LAST NAME in alphabetical order, (2) list each member's TOTAL DUE, (3) for each member,
display a YES or NO answer indicating if the TOTAL DUE is over $100, and (4)display the
percentage of records that have a TOTAL DUE value greater than $100 in the report output.
The output from this query might look as follows:

Last Name Total Due Total Due greater than $100
Adams $85.00 NO
Albert $120.00 YES
Anders $120.00 YES
Andersen $70.00 NO
Anderson $115.00 YES
Archer $155.00 YES
Baldwin $100.00 NO
Beauchamp... $35.00... NO...

Total Due greater than $100 = 22%

© DataEase International Ltd

301

periods
Type
Financial Function
Purpose
The periods function calculates how long a financial transaction requires to reach a future
target value given the presentvalue, futurevalue, installment payment, and interest rate.
Syntax
periods(presentvalue, futurevalue, installment, rate)

Returns
A numeric value (the number of periods needed to reach the target futurevalue of the
investment).
Usage
If the installment payment increases the value of the investment (e.g., an annuity), the
installment is expressed as a positive amount. If the payment decreases the value of the
investment (e.g., loan amortization), the installment is expressed as a negative amount.
The interest rate, installment payments, and time periods must be based on the same terms.
To determine periods as a number of months, the rate is expressed as the annual rate / 12. To
determine periods as a number of weeks, the rate is expressed as 7*annual rate / 365.
Examples
ceil(periods(10000, 0, -150, 8 / 12))

Returns: 89

This example calculates how many months it takes to repay a loan of $10,000 at 8% annual
interest with monthly installment payments of $150. The ceil function rounds up the result to the
next integer.

ceil(periods(0, 10000, 250, 10 / 12))

Returns: 35

This example calculates how many months it takes to accumulate $10,000 in savings, if you
begin with no money in the account, make monthly deposits of $250, and earn 10% annual
interest.

Note: DataEase financial functions are derived from the formula shown below. (The double
asterisks (meaning "raise to the power") cannot be used in a script).

futurevalue = principal * ((1 + (rate/100)) ** periods) + (installment/(rate/100)) * (((1 +
(rate/100)) ** periods) - 1)

When typing fractions like 8 / 12, DataEase requires that you type a space before and after the
/ division symbol.

© DataEase International Ltd

302

power
Type
Scientific Function
Purpose
The power function raises a numeric value to a specified power.
Syntax
power(BASE, EXPONENT)

Returns
A numeric value equal to the base raised to the exponent.
Usage
DataEase does not support ** as a symbol for exponentiation. Use the power function instead.
Examples
power(12, 2)

Returns: 144

power(6, 3)

Returns: 216

power(8, 1 / 3)

Returns: 2

© DataEase International Ltd

303

presentvalue
Type
Financial Function
Purpose
The presentvalue function calculates the required starting amount for a financial transaction
given the futurevalue, installment payment, interest rate, and number of payment periods.
Syntax
presentvalue(futurevalue, installment, rate, periods)

Returns
A numeric value (the initial value before any installment payments are made).
Usage
If the installment payment increases the value of the investment (e.g., an annuity), the
installment is expressed as a positive amount. If the payment decreases the value of the
investment (e.g., loan amortization), the installment is expressed as a negative amount.
The interest rate, installment payments, and time periods must be based on the same terms.
For example, if the periods are expressed in months, the monthly interest rate is expressed as
the annual rate/12.
Example 1
presentvalue(0, -150, 7.9 / 12, 48)

Returns: 6156.12

This example calculates the auto loan amount you can afford to borrow at an interest rate of
7.9% if you want to repay the loan in 48 monthly payments of $150.

Example 2
presentvalue(125000, 150, 10 / 12, 240)

Returns: 1514.00

This example calculates the required starting balance for a savings plan designed to accrue a
$125,000 balance in 20 years based on monthly payments of $150 and an annual interest rate
of 10%.

Note: DataEase financial functions are derived from the formula shown below. (The double
asterisks (meaning "raise to the power") cannot be used in a script).

futurevalue = principal * ((1 + (rate/100)) * * periods) +
(installment/(rate/100)) * (((1 + (rate/100)) * * periods)
- 1)

When typing fractions like 7.9 / 12, DataEase requires that you type a space before and after
the / division symbol.

© DataEase International Ltd

304

Primary Table
Type
Concept
Purpose
The first table specified in a script is called the Primary table for the script. The Primary table
should be the table that holds the key data you want to view or manipulate.
Usage
One table can be related to another table by either a predefined or an ad hoc relationship. A
table related to the Primary table is called a Secondary table. A table related to a Secondary
table is called a Tertiary table, etc. There can be any number of such relationship levels.
When processing the records in a table, the data in another table can be accessed if a
relationship exists between these tables. A relational operator (all, any, count of, highest of,
lowest of, mean of, or sum of) is used to access the data in the related table.

© DataEase International Ltd

305

Procedural Commands
Type
Concept
Purpose
The DQL Procedural commands are used to organize and control the flow of actions in a
procedure.
Usage
Procedural commands can be used in both Processing procedures and Control procedures.
Example
 case (spellweekday (weekday(current date))

 value "MONDAY" :

 run procedure "LAST WEEK SUMMARY" .

 value "FRIDAY" :

 run procedure "PRINT RESERVATIONS" .

 others :

 call menu "MAIN MENU" .

 end

This script tells DataEase: (1) If the current date is a Monday, run the LAST WEEK SUMMARY
procedure, (2) if the current date is a Friday, run the PRINT RESERVATIONS procedure, and
(3) if the current date is any other day of the week, display the MAIN MENU.

© DataEase International Ltd

306

Processing Procedure
Type
Concept
Purpose
A DQL Processing procedure can enter, delete, and modify records, as well as create screen,
disk, or printed output based on the script instructions, the data stored in database tables, and
additional data input during the execution of the procedure.
Usage
The Processing commands (shown at right) are primarily used to create a Processing
procedure. These commands can also be used in a Control procedure.
Example
 for MEMBERS ;

 list records

 LAST NAME in order ;

 TOTAL DUE .

 end

This script tells DataEase: (1) Process all the MEMBERS records, and (2) for each record
processed, list the LAST NAME and the TOTAL DUE values and arrange the output in
alphabetical order by LAST NAME.

Note: When accessing data in an SQL database, DataEase treats a Processing procedure as
a single transaction, unless you use the DQL begin transaction and commit commands to
divide the procedure into multiple transactions.

© DataEase International Ltd

307

proper
Type
Text Function
Purpose
The proper function converts the first letter in each word in a text value to uppercase.
Syntax
proper(TEXT VALUE)

Returns
The specified text value with the first letter in each word capitalized.
Usage
Any letter preceded by a space, hyphen, ampersand, or a period is capitalized by the proper
function as is the first letter in a parenthesized value. Other punctuation, including the
apostrophe, does not act as a delimiter for the proper function.
If you enter a capital letter in a position that is not the first letter in the word or specified value,
it remains in uppercase when the value is processed by the proper function.
To capitalize the first character of each word and force all other characters to lower-case, use
the lower function in conjunction with the proper function as follows:
proper (lower (LAST NAME))

The proper function is commonly entered as the Derivation Formula for Text fields during Form
Definition. For example, if the derivation for the LAST NAME field is:

proper(LAST NAME)

DataEase follows the rules listed above to capitalize the values entered in the LAST NAME
field.
Examples
proper("playa blanca")

Returns: Playa Blanca

proper("sapphire international")

Returns: Sapphire International

proper(FULL NAME)

Returns: The value in the FULL NAME field in the proper format for each record processed.
For example, if a record contains the value roger birnbaum, the function returns Roger
Birnbaum.

© DataEase International Ltd

308

query selection
Type
Processing Command
Purpose
The query selection command is functional only on a LAN (local area network). This command
is used to override DataEase's default locking rules. It should only be used by a technical
expert who is very familiar both with DataEase and the LAN environment in use. If you do not
have expertise in LANs, you can rely on the default locking rules to lock your data
appropriately.
Before DataEase begins processing records for a script, it must select the records to be
processed. The query selection command tells DataEase how to set locks prior to the start of
processing if records are being selected or sorted on an indexed field. If records are not being
selected or sorted on an indexed field, the default locking rules apply.
Syntax
query selection lock files|records|nothing .

The three syntax options that are used in conjunction with the query selection command are
explained below.
The query selection lock files command overrides the default Record Selection locking rules
and locks the table(s) from which records are being selected. Other users cannot add, modify,
or delete records in the table. They can view records in the table if the selected records will
only be listed by the procedure (not modified or deleted). The table remains locked until the
end of the procedure.
The query selection lock records command overrides the default Record Selection locking
rules and locks any records that have been selected for processing. Other users cannot modify
or delete these records. They can view the records if the selected records will only be listed by
the procedure (not modified or deleted). Other users can view, modify, or delete records in the
same table(s) that have not been selected. Once processing begins, the default locking rule
applies.
The query selection lock nothing command overrides the default Record Selection locking
rules and unlocks the table(s) from which records are being selected. Other users can view,
modify, or delete records that have been selected for processing. Once processing begins, the
default locking rule applies.
The lock nothing command can be useful in situations where you need to keep data available
to many users even while running a procedure that uses that data. However, with this
command in effect, it is possible for a user to change a record that has already been selected
for processing.

Caution
The query selection lock records command should be used with great care. It should only be
used for procedures that select very few records from very few tables. If this command is used
for many records, most LANs cannot support the number of locks required. If this command is
used incorrectly, the integrity of your data can be compromised.

Note: If a lock all files command occurs as the first command in a script, it overrides the
default locking rules and any locking commands specified later in the script. A lock all files
command locks all files used by the procedure until an unlock command is encountered or the
procedure ends, regardless of subsequent commands. See the lock command earlier in this
chapter for more information.
Usage

© DataEase International Ltd

309

The query selection command overrides the LAN default Record Selection locking rules
assigned by the database administrator. A query selection command is automatically
terminated at the end of a script.
When using lock records on a DOS network, we recommend that you process a small number
of records. Otherwise, your network may run out of locks and cause your workstation (or the
network server) to lock up and require rebooting.

Example

query selection lock nothing .

for MEMBERS with BONUS POINTS > 500 ;

modify records

TOTAL DUE := (TOTAL DUE * data-entry DISCOUNT) .

end

This script tells DataEase: (1) Override the default Record Selection locking rule so other users
can view, add, delete, or modify the data in the MEMBERS table while records are selected to
be processed by this procedure, (2) select all the MEMBERS records whose BONUS POINTS
are greater than 500, and (3)modify each selected record by multiplying the TOTAL DUE
amount by the value in the DISCOUNT field on the Data-entry form.
In this example many records may be selected to be processed. However, users can still
access the MEMBERS table while the procedure is processing. It is unlikely that any member's
BONUS POINTS will fall below 500 while the script is being processed.

© DataEase International Ltd

310

random
Type
Math Function
Purpose
The random function returns a random decimal value between 0 and 1 (inclusive). No value is
required in the function's argument.
Syntax
random()

Returns
A number between 0 and 1 (inclusive).
The result of the random function is really a pseudo-random number calculated by a formula,
not a true random number.
Usage
The following steps are used to generate a random integer using the random function:
• Determine the range (number of possibilities) in which the random number must fall. For

example, if the desired range is between 10 and 100, the range is 90.
• Determine starting value (smallest integer) of the range. In the example 10-100, the starting

value is 10.
• Use the following formula to generate a random integer:
(random() * RANGE) + STARTING VALUE

Examples
floor(random() * 9)

Returns: A random integer between 0 and 9.

floor(random() * 90) + 10))

Returns: A random integer between 10 and 100.

In these examples, floor rounds down the result to the nearest integer.

© DataEase International Ltd

311

rate
Type
Financial Function
Purpose
The rate function calculates the interest rate of a financial transaction given the presentvalue,
futurevalue, installment payment, and the number of payment periods.
Syntax
rate(presentvalue, futurevalue, installment, periods)

Returns
A numeric value (the interest rate).
Usage
If the installment payment increases the value of the investment (e.g., an annuity), the
installment is expressed as a positive amount. If the payment decreases the value of the
investment (e.g., loan amortization), the installment is expressed as a negative amount.
The interest rate, installment payments, and time periods must be based on the same terms. If
payments are made monthly, periods is computed as the number of years * (multiplied by) 12
and rate is computed as 1/12 of the annual rate.
Example 1
12 * rate(12000, 0, -289, 48)

Returns: 7.3

This example calculates the annual interest rate on a $12,000 car loan to be repaid in 48
monthly payments of $289.
Example 2
12 * rate(0, 20000, 250, 60)

Returns: 10.2

This example calculates the annual interest rate required to accumulate $20,000 in savings, if
you begin with no money in the account and make monthly payments of $250 over a period of
5years.

Note: DataEase financial functions are derived from the formula shown below. (The double
asterisks (meaning "raise to the power") cannot be used in a script).

futurevalue = principal * ((1 + (rate/100)) ** periods) + (installment/(rate/100)) * (((1+
(rate/100)) ** periods) - 1)

When typing fractions like 10 / 12, DataEase requires that you type a space before and after
the / division symbol.

© DataEase International Ltd

312

record entry
Type
Control Command
Purpose
The record entry command tells DataEase to display a specified Record Entry form.
Syntax
record entry "FORMNAME" .

Usage
The record entry command opens a specified form at any point in a Control procedure and
allows records to be entered or modified in that form. You can enter as many records as you
like, using either Form View or Table View.
Unlike the input using command, the record entry command provides all the functions available
in User View, including the ability to add, modify, and delete records.
When you finish entering records and close the form, the Control procedure resumes with the
action following the record entry command.
Example

record entry "MEMBERS" .

run procedure "PRINT RESERVATIONS" .

application status records .

This script tells DataEase: (1) Display the MEMBERS form so the user can enter view, enter,
modify, or delete member records, (2) when the user finishes entering records, run the PRINT
RESERVATIONS procedure, and (3) after running the procedure, display the status of the
records in the current application.
Note: This command can also be used to open any document (form, menu, report or
procedure). It acts like the button action “document open”.

© DataEase International Ltd

313

Relational Statistical Operators
Type
Operator
Purpose
Relational Statistical Operators are used to generate statistical information on the values in the
specified field in a set of records in a related table (i.e., a set of records that are related to the
record currently being processed, such as all the reservations for an individual member).
Syntax
relational statistical operator TABLENAME|RELATIONSHIP

[named "UNIQUE RELATIONSHIP NAME"]

[with (selection criteria) paren] FIELDNAME ;

Usage
• To generate statistics on a field in a related table:
• Insert the Relational Statistical Operator followed by the name of the related table or the

name of the relationship.
• Assign a unique name to the relationship if necessary using the named operator.
• Insert any desired selection criteria in parentheses.
• Insert the field name followed by a semicolon or a period, depending on the location of the

statement in the script.

The Relational Statistical Operators are: count of, highest of, lowest of, mean of, and sum of.
The count of operator counts the number of related records, not field values. The field name is
omitted at the end of the count of statement.
The highest of and lowest of operators can be used on both Text and Number fields. highest of
returns the highest ASCII field value in the set of related records. lowest of returns the lowest
ASCII field value.
The sum of and mean of operators are used on Number fields. sum of returns the total of the
field values in the set of related records. mean of returns the average of the field values in the
set of related records.
Each Relational Statistical Operator is treated as a separate entry in this Language Reference.

© DataEase International Ltd

314

Relationships
Type
Concept
Purpose
A Relationship is a link between two groups of records whether in the same table or in two
different tables. When two groups of records are related, you can access information in one
group while processing records in the other group. DataEase employs two types of
relationships.
In a predefined relationship, the two groups of records are related by a link entered on a
Relationships form. The link is created by specifying one or more fields that hold the same
information in both groups. Because this relationship is stored in the database, it can be used
in different procedures whenever necessary.
An ad hoc relationship is a relationship that is defined while creating a script. Although an ad
hoc relationship can be used like a predefined relationship to access information in another
group of records, the relationship isn't stored as a part of the database. Therefore, it can only
be used in the procedure in which it is defined.
Usage
In a script, a value in a related table or group of records is called a relationship value. A
relationship value can be used in a script wherever you can use a field, a constant value, or a
variable (such as in selection criteria, as a list item, or as a value assigned to a temporary or
global variable).
Once a relationship is established, the DQL Relational Operators let you access and
manipulate values in the related table. For example, if the script is processing MEMBERS
records, the statement:

sum of RESERVATIONS TOTAL DUE ;

..sums the TOTAL DUE field for each related reservation (that is, for every RESERVATIONS
record with the same MEMBER ID as the MEMBERS record currently being processed).
The use of each Relational Operator is covered in a separate entry in this Language
Reference.

© DataEase International Ltd

315

reorganize
Type
Control Command
Purpose
The reorganize command reorganizes the specified table by updating the table's indices and
physically erasing deleted records from disk.
The reorganize command functions like selecting Application>>Utilities>>Reorganize.
Syntax
reorganize "TABLENAME" [UNCLUSTERED|CLUSTERBY FIELD1 [;
FIELD2...]] .

Usage
The reorganize command, used by itself, reorganizes the specified table as described above. If
the table contains a clustered index, the records are reorganized according to the table-defined
cluster order.
The tablename must be enclosed in quotes.
When a table is reorganized, all records that have been deleted since the last reorganization
are permanently erased and all indices used to organize the data in the table are recreated.
If the table has become inconsistent (signaled by an error message), the reorganize command
reorganizes the records in the table and returns the table to a consistent status.
The reorganize unclustered command overrides any table-defined cluster order. DataEase
reorganizes the table in unclustered order. Any records entered since the table was last
reorganized are left in the order they were entered.
The reorganize cluster by command lets you override the table-defined cluster order. The table
is reorganized in order according to the field name(s) you specify. DataEase prohibits you from
including any fields specified in the table-defined cluster order.
LAN
On a LAN (Local Area Network), if another user is currently using any resource required by the
reorganize command, DataEase displays a Resource Conflict message. While this message is
displayed, DataEase automatically tries to execute the command at brief intervals.
When the required resource becomes available, DataEase automatically resumes processing
and executes the rest of the procedure.
Example 1
reorganize "MEMBERS" .

run report "PRINT INVOICES" .

This script tells DataEase: (1) Reorganize the MEMBERS table, and (2) when the
reorganization is completed, run the PRINT INVOICES procedure.
Example 2
reorganize "DEPARTURE ZONES" cluster by DEPARTURE ZONE .

This script tells DataEase to reorganize the DEPARTURE ZONES table. Cluster the data in
order by the DEPARTURE ZONE field.

© DataEase International Ltd

316

restore db (restore database)
Type
Control Command
Purpose
The restore db command recreates a database. When processing reaches a restore db
command, DataEase displays a series of prompts asking you to specify the drive on which the
database should be restored and how you want to handle any errors that occur during the
restore procedure.
The restore db command functions like selecting Application>>Utilities>>Restore.
Syntax
restore db .

Usage
When you backup an application using the backup db command, DataEase copies the
application using a special format. The backup copy can only be used after it is restored using
the DataEase restore db command or Application menu option.
When you backup and restore an application, all records that have been deleted since the last
backup and restore operation are permanently erased.
LAN
On a LAN (Local Area Network), if another user is currently using any resource required by the
restore db command, DataEase displays a Resource Conflict message. While this message is
displayed, DataEase automatically tries to execute the command at brief intervals.
When the required resource becomes available, DataEase automatically resumes processing
and executes the rest of the procedure.
Example
record entry "MEMBERS" .

run procedure "PRINT INVOICES" .

backup db .

restore db .

This script tells DataEase: (1) Display the MEMBERS form so the user can enter new member
records, (2) when the user closes the MEMBERS form, run the PRINT INVOICES procedure,
(3) make a backup copy of the current application, and (4) when the backup procedure is
complete, begin the procedure to restore the application from the backup copy.

© DataEase International Ltd

317

rollback
Type
Procedural Command
Purpose
The rollback command is used to cancel a partially completed transaction when processing
data stored in an SQL database. A procedure may contain any number of rollback commands.
The DQL commit and rollback commands are used to divide a procedure into multiple
transactions (a transaction can be any command or procedure that changes data). By defining
separate transactions within a DQL Procedure, it's possible to rollback partially completed
changes that may leave the data in an inconsistent state.
When processing reaches a rollback command, DataEase immediately cancels all changes
made to the data since the last commit command was processed. If a transaction accesses
more than one server, the rollback command automatically cancels the transaction changes on
each of the active servers. Once a transaction is committed, it cannot be undone by a rollback
command.
The corresponding SQL command, ROLLBACK TRANSACTION, is used to cancel an
embedded exec SQL statement in a DQL Procedure.
Syntax
rollback .

Usage
A rollback command can be used anywhere in a procedure.
The rollback command is often preceded by a conditional if statement. The if condition either
checks the current status or current SQLCODE variable to see if the transaction was
successful, or tests whether a specific business rule has been violated. If the last transaction
was not fully completed or the business rule was violated, the rollback command tells
DataEase to cancel the partially completed changes. Otherwise, processing continues.
If you do not include a rollback command in a procedure, DataEase automatically issues a
rollback command at the end of any procedure that is interrupted before completion (due to a
system malfunction, or when you voluntarily abort because of a resource conflict).
Example :
 for RESERVATIONS with POSTED = NO ;

 begin transaction

 enter a record in INVOICES

 copy all from RESERVATIONS .

 modify records in MEMBERS

 RESERVATIONSTOTAL := RESERVATIONSTOTAL + RESERVATIONS TOTAL
DUE ;

 if any MEMBERS RESERVATIONS TOTAL > 20,000 then

 rollback .

 modify records in MEMBERS

 RESERVATIONSTOTAL := RESERVATIONSTOTAL - RESERVATIONS TOTAL
DUE ;

 message " No member can have an account

 balance over $20,000. This reservation

 has been canceled. " .

© DataEase International Ltd

318

 else

 modify records

 POSTED = YES .

 commit .

 message " Member and Reservation Information

 updated. " .

 end

 end

This first part of this procedure contains a transaction that enters a record in a table that owns
an SQL table (INVOICES) and modifies a record in a native DataEase table (MEMBERS). The
script enters a record in the INVOICES table for each record in the RESERVATIONS table that
has not been posted by entering all the information for each unposted reservation into an
invoice.
The script then adds the reservation's total to the member's total. If the member's cumulative
reservation total exceeds $20,000, the reservation is canceled, the modifications made to the
SQL table are rolled back, and the cost of the reservation is subtracted from the member's
total due.
The second part of the transaction modifies the current RESERVATIONS record by setting the
POSTED field to yes. This part of the script is executed only if the first part of the transaction is
successful. Once the second part is completed, the entire transaction is committed.

Note: When a transaction fails and data changes are rolled back, only the last group of
modifications is canceled. Earlier transactions that have already been committed are not
canceled. Carefully placed commit and rollback commands in your DQL procedures can
minimize the work that must be repeated if an error occurs during processing.

© DataEase International Ltd

319

run procedure
Type
Control Command
Purpose
The run procedure command opens the specified procedure document and executes its DQL
instructions.
Syntax
run procedure "PROCEDURE NAME" .

Usage
The run procedure command automatically opens and runs a previously defined procedure
document. When the procedure finishes processing, the Control Procedure automatically
resumes with the action following the run procedure command.
The procedure name can be a constant or any expression (including functions) that returns a
text string specifying the desired procedure name.
Example

record entry "MEMBERS" .

run procedure "PRINT INVOICES" .

application status records .

This script tells DataEase: (1) Display the MEMBERS form so the user can enter new member
records, (2) when the user closes the MEMBERS form, run the PRINT INVOICES procedure,
then (3) display the status of the records in the current database.

© DataEase International Ltd

320

Secondary table
Type
Concept
Purpose
A table related to the Primary table is called a Secondary table.
Usage
One table can be related to another table by either a predefined or an ad hoc relationship. A
table related to the Primary table is called a Secondary table. A table related to a Secondary
table is called a Tertiary table, etc. There can be any number of such relationship levels.
When processing the records in a table, the data in a Secondary table can be accessed if a
predefined relationship exists between the tables or if an ad hoc relationship has been
established in the current script. A relational operator (all, any, count of, highest of, lowest of,
mean of, or sum of) or nested for command is used to access the data in the related table.

© DataEase International Ltd

321

seconds
Type
Time Function
Purpose
The seconds function extracts the seconds from a time value expressed in 24-hour format.
Syntax
seconds(TIME VALUE) paren

Returns
An integer value from 0 to 59.
Examples
seconds(09: 15: 34)

Returns: 34

seconds(02: 53: 20)

Returns: 20

seconds(CHECK-OUT T IME)

Returns the seconds value in the CHECK-OUT TIME field for every record that is processed. If
a record contains the value 07:30:25, the function returns 25.

© DataEase International Ltd

322

Selection Criteria
Type
Concept
Purpose
In a script or report, you can tell DataEase to process or display all the records in a specified
table, or only some of the records. The limiting factors that determine which records are
selected for processing are called selection criteria.
The selection criteria tell DataEase to compare the value in the specified field in each record to
a comparison value that you specify in a script or selection filter. When the procedure or report
is run, the records that meet the defined selection criteria are processed. Records that do not
meet the criteria are not processed.
Usage
There are two situations in which selection criteria must be enclosed in parentheses:
Criteria must be enclosed in parentheses when used with a relational operator to select
records based on the values stored in a table other than the Primary table. (See Example2.)
When two sets of selection criteria are combined with the and and or operators, the criteria
must be enclosed in parentheses to clarify the meaning. (See Example 3.)
Example 1
The statement:

for MEMBERS with TOTAL DUE > 100 ;

..tells DataEase to process only the MEMBERS records that have a value greater than 100 in
the TOTAL DUE field.
Example 2
The statement:

for MEMBERS with (sum of RESERVATIONS TOTAL DUE > 5000) ;

..tells DataEase to process only the MEMBERS records whose related RESERVATIONS have
a combined TOTAL DUE that is greater than 5000.

Example 3
The statement:

for MEMBERS with (STATE = "NY" or STATE = "NJ")

and TOTAL DUE > 200 ;

..tells DataEase to process MEMBERS records for only the members who live in either New
York or New Jersey and who have a TOTAL DUE greater than 200.

© DataEase International Ltd

323

sin
Type
Trigonometric Function
Purpose
The sin function calculates the sine of an angle expressed in radians.
Syntax
sin(NUMERIC VALUE)

Returns
A numeric value.
Usage
The numeric value in a Trigonometric function can be a constant value (as shown below), a
variable, a field value, or an expression.
Examples
sin(2.53)

Returns: 0.574172

sin(-3)

Returns: -0.14112

sinh
Type
Trigonometric Function
Purpose
The sinh function calculates the hyperbolic sine of an angle expressed in radians.
Syntax
sinh(NUMERIC VALUE)

Returns
A numeric value.
Usage
The numeric value in a Trigonometric function can be a constant value (as shown below), a
variable, a field value, or an expression.
Examples
sinh(2.53)

Returns: 6.2369235

sinh(-4.4)

Returns: -40.71929

© DataEase International Ltd

324

Sorting
Sorting lets you process records and generate the resulting output in either ascending or
descending order based on the values in the specified field.
The in order operator sorts records in sequence from least to greatest value based on the type
of field as follows:
Text: alphabetical order (A-Z)
Number: least to greatest numerical value
Date: earliest to latest date
Time: earliest to latest time
Choice: lowest to highest numbered choice

Example
 for CLUBS ;

 list records

 CLUB NAME in order .

 end

The output from this script might look as follows:

Club Name
Bora Bora
Buccaneer's Creek
Cancun...
Uxmal

The in reverse operator sorts records in greatest to least sequence. For example, if we change
the script to:

 for CLUBS ;

 list records

 CLUB NAME in reverse .

 end

The output is reversed:

Club Name
Uxmal
Turkoise
Teotihuacan...
Bora Bora

© DataEase International Ltd

325

spellcurrency
Type
Spell Function
Purpose
The spellcurrency function spells the monetary equivalent of a numeric value.
Syntax
spellcurrency(NUMERIC VALUE)

Returns
A text value.
Examples
spellcurrency(36.25)

Returns: Thirty Six Dollars and 25 Cents

spellcurrency(210.00)

Returns: Two Hundred Ten Dollars and 00 Cents

spellcurrency(TOTAL DUE)

Returns:The spelled-out currency amount in the TOTAL DUE field for every record processed.
If a record contains the value 905.75, the function returns Nine Hundred and Five Dollars and
75 Cents.

Note: the actual currency used is determined by which regional version of DataEase you have
purchased. UK users, for example, should see the words “pounds” and “pence” instead of
“dollars” and “cents”.

© DataEase International Ltd

326

spelldate
Type
Spell Function
Purpose
The spelldate function spells a date value in common form.
Syntax
spelldate(DATE VALUE)

Returns
A text value.
Examples
spelldate(07/01/01)

Returns: July 1, 2001

spelldate(12/31/00)

Returns: December 31, 2000

spelldate(highest of RESERVATIONS DATE)

Returns:The spelled-out value in the most recent reservation's DATE field. If the most recent
RESERVATIONS record contains the value 10/31/01 in the DATE field, the function returns
October 31, 2001.

© DataEase International Ltd

327

spellmonth
Type
Spell Function
Purpose
The spellmonth function spells the name of the month that corresponds to a numeric value
from 1 (January) to 12 (December).
Syntax
spellmonth(NUMERIC VALUE)

Returns
A text value.
Usage
The input value must be an integer between 1 and 12 (inclusive).
Examples
spellmonth(7)

Returns: July

spellmonth(month(12/31/99)

Returns: December

spellmonth(month(highest of RESERVATIONS DATE))

Returns: The name of the month that corresponds to the value in the most recent reservation's
DATE field. If the most recent RESERVATIONS record contains the value 10/31/01 in the
DATE field, the function returns October.

© DataEase International Ltd

328

spellnumber
Type
Spell Function
Purpose
The spellnumber function spells the integer portion of a numeric value.
Syntax
spellnumber(NUMERIC VALUE)

Returns
A text value
Usage
spellnumber(999999999) returns Nine Hundred Ninety Nine Million, Nine Hundred Ninety Nine
Thousand, Nine Hundred Ninety Nine.
Examples
spellnumber(3.45)

Returns: Three

spellnumber(323.45)

Returns: Three Hundred Twenty Three

spellnumber (RESERVATION ID)

Returns: The spelled-out number in the RESERVATIONID field for every record that is
processed. If a record contains the value 10251, in the RESERVATION ID field, the function
returns Ten Thousand Two Hundred Fifty One.

© DataEase International Ltd

329

spellweekday
Type
Spell Function
Purpose
The spellweekday function spells the name of the day that corresponds to a numeric value
from 1 (Monday) to 7 (Sunday).
Syntax
spellweekday(NUMERIC VALUE)

Returns
A text value.
Examples
spellweekday(5)

Returns: Friday

spellweekday(weekday(12/31/99)

Returns: Sunday

spellweekday(weekday(highest of RESERVATIONS DATE))

Returns: The name of the day that corresponds to the value in the most recent reservation's
DATE field. If the most recent RESERVATIONS record contains the value 10/31/99 in the
DATE field, the function returns Tuesday.

© DataEase International Ltd

330

sqrt (square root)
Type
Scientific Function
Purpose
The sqrt function calculates the square root of a numeric value.
Syntax
sqrt(NUMERIC VALUE)

Returns
A numeric value.
Usage
The numeric value in a Scientific function can be a constant value, a variable, a field value, or
an expression. The sqrt function should only be used on a positive value. If the input value is
negative, the result is unpredictable.
Examples
sqrt(9)

Returns: 3

sqrt(16)

Returns: 4

sqrt(FLOOR SPACE)

Returns: The square root of the value in the FLOOR SPACE field for every record processed.
If a record contains the value 16000 in the FLOOR SPACE field, the function returns 40.

© DataEase International Ltd

331

Statistical Operators
Type
Operator
Purpose
Statistical Operators (shown at right) are used to generate statistical information on numeric
fields that appear as list items in a script.
Syntax
FIELDNAME : statistical operator

Usage
To generate statistics on a field:
• Insert the fieldname followed by a colon.
• After the colon, insert the appropriate statistical operators.
• After the last operator, insert a semicolon or a period, depending on the location of the

operator in the script.

Statistical Operators can be used on any type of numeric field (Currency, Integer, Fixed Point,
and Floating Point). They cannot be used on Numeric String fields.
You may use as many operators as you want on a given field, one after another, separating
each by a space.
If you use a statistical operator and you want the field value listed in addition to the statistical
information, you must include the item operator after the field name.
The statistical operators are: item, max, mean, min, std. dev., std. err., sum, and variance.
Each statistical operator is treated as a separate entry in this Language Reference.

© DataEase International Ltd

332

std.dev. (standard deviation)
Type
Statistical Operator
Purpose
The std.dev. operator calculates the standard deviation (the square root of the variance) in a
set of data. The result usually appears as a statistic in the summary area at the end of a report.
Syntax
FIELDNAME|VARIABLE : std.dev. [other statistical operators] ; |
.

Returns
A numeric value.
Usage
Standard deviation is used as an indicator of variability in a set of data (68% of the data set is
contained in the first standard deviation).
The std.dev. operator can also be used when creating a report using Query by Model. To
generate the standard deviation in Query by Model, highlight the column whose standard
deviation you want to calculate, then select std.dev. in the Summarize pick list.

Example

 for MEMBERS with TOTAL DUE > 175 ;

 list records

 LAST NAME in order ;

 TOTAL DUE : item sum std.dev. .

 end

This script tells DataEase: (1) Process all the MEMBERS records that have a value greater
than $175 in the TOTAL DUE field, (2) list the members by LAST NAME in alphabetical order,
and (3) list each member's TOTAL DUE amount, the sum of these amounts, and the standard
deviation in the report output.
The output from this script might look as follows:

Last Name Total Due
Christino $280.00
Perrault $215.00
Stafford $185.00
Strachan $205.00
Sum Total Due: $885.00
Std. Dev. in data set: $41.10

© DataEase International Ltd

333

std.err. (standard error)
Type
Statistical Operator
Purpose
The std.err. operator calculates the standard error (the standard deviation divided by the
square root of the number of items) in a set of data. The result usually appears as a statistic in
the summary area at the end of a report.
Syntax
FIELDNAME|VARIABLE : std.err.

[other statistical operators] ; | .

Returns
A numeric value.
Usage
Standard error indicates the variability in a subset of data; if the standard error of the mean of
two data sets overlap, the subsets may be considered to be members of the same data set.
The std.err. operator can also be used when creating a report using Query by Model. To
generate the standard error in Query by Model, highlight the column whose standard error you
want to calculate, then select std.err. in the Summarize pick list.
Example
 for MEMBERS with TOTAL DUE > 175 ;

 list records

 LAST NAME in order ;

 TOTAL DUE : item sum std.dev. std.err. .

 end

This script tells DataEase: (1) Process all the MEMBERS records that have a value greater
than $175 in the TOTAL DUE field, (2) list the members by LAST NAME in alphabetical order,
and (3) list each member's TOTAL DUE and include the standard deviation, standard error,
and the sum of all the TOTAL DUE amounts in the procedure output. The output from this
script might look as follows:

Last Name Total Due
Christino $280.00
Perrault $215.00
Stafford $185.00
Strachan $205.00
Sum Total Due: $885.00
Std.Dev. in data set: $41.10
Std. Err. in data set: $20.55

© DataEase International Ltd

334

sum
Type
Statistical Operator
Purpose
The sum operator adds the values in a specified field among all the records that are
processed.
Syntax
FIELDNAME | VARIABLE : sum [other statistical operators] ; | .

Returns
A numeric value
Usage
The value returned by the sum operator differs depending on where its corresponding
Summary field appears in the document layout. The effect of the position of the Summary field
on the sum value is summarized in the table below.

Location Sum
Document Header or Footer N/A
Main form object Grand total
Group Form object Group total

Example
 for MEMBERS with TOTAL DUE > 175 ;

 list records

 LAST NAME in order ;

 TOTAL DUE : item sum .

 end

This script tells DataEase: (1) Process all the MEMBERS records that have a value greater
than $175 in the TOTAL DUE field, (2) list the members by LAST NAME in alphabetical order,
and (3) list each member's TOTAL DUE and include the sum of all the TOTAL DUE amounts
in the report output.
The output from this script might look as follows:

Last Name Total Due
Christino $280.00
Perrault $215.00
Stafford $185.00
Strachan $205.00
Sum Total Due: $885.00

Note: There's an important difference between the statistical operator sum and the relational
statistical operator sum of. sum returns the total of the values in the specified field among the
records being processed. sum of returns the total of the values in the specified field among the
records related to the records being processed.

© DataEase International Ltd

335

sum of
Type
Relational Statistical Operator
Purpose
The sum of operator adds the values in a specified field in all matching records in a related
table. The result can appear as a list item in the detail area of a report or as a statistic in the
summary area at the end of each group or at the end of the report.
Syntax
sum of TABLENAME|RELATIONSHIP

[named "UNIQUE RELATIONSHIP NAME"]

[with (selection criteria)] FIELDNAME ; | .

Returns
A numeric value.
Example
 for MEMBERS ;

 list records

 LAST NAME in order ;

 sum of RESERVATIONS TOTAL DUE .

 end

This script tells DataEase: (1) Process all the MEMBERS records and list each member's
LAST NAME in alphabetical order, (2) for each MEMBERS record processed, find all the
related records in the RESERVATIONS table (those that have the same MEMBERID), and (3)
list the sum of the TOTAL DUE field for the set of RESERVATIONS records that match the
current MEMBERS record.
The output from this script might look as follows:
Last Name Sum of Reservations

Total Due
Adams $3000.00
Albert $4760.00
Anders $4420.00
Andersen $2100.00
Anderson $4320.00
Archer... $4796.00...

If you want to include the sum of this whole group of reservations, change the fourth line of the
query to read:

sum of RESERVATIONS TOTAL DUE : item sum .

Note: There's an important difference between the statistical operator sum and the relational
statistical operator sum of. sum returns the total of the values in the specified field among the
records being processed. sum of returns the total of the values in the specified field among the
records related to the records being processed.

© DataEase International Ltd

336

tan (tangent)
Type
Trigonometric Function
Purpose
The tan function calculates the tangent of an angle expressed in radians.
Syntax
tan(NUMERIC VALUE)

Returns
A numeric value.
Usage
The numeric value in a Trigonometric function can be a constant value (as shown below), a
variable, a field value, or an expression.
Examples
tan(2.53)

Returns: -0.701292

tan(-1.89)

Returns: -3.025665

tanh (hyperbolic tangent)
Type
Trigonometric Function
Purpose
The tanh function calculates the hyperbolic tangent of an angle expressed in radians.
Syntax
tan(NUMERIC VALUE)

Returns
A numeric value.
Usage
The numeric value in a Trigonometric function can be a constant value (as shown below), a
variable, a field value, or an expression.
Examples
tanh(2.53)

Returns: 0.987388

tanh(1.45)

Returns: -0.895692

© DataEase International Ltd

337

temp
Type
Keyword
Purpose
The keyword temp specifies a temporary variable.
Syntax
define temp VARIABLE NAME datatype .

assign temp VARIABLE NAME := value .

Usage
A variable is used to store a value such as a text string or a calculated result that can change
during the processing of a procedure. By specifying the variable's name in a script, the stored
value can be used like any other value.
The status of a variable can be global (denoted by the keyword global) or temporary (denoted
by the keyword temp).
Although a global variable can pass its value from one procedure to another, a temporary
variable holds its value only while the current procedure is processing.

Note: Because the value in a variable is frequently accumulated as each record is processed,
you cannot sort (e.g., using in order or in groups) the value stored in a variable.

Example
 define temp "DISCOUNT" Number .

 for RESERVATIONS with TOTAL DUE > 4000 ;

 assign temp DISCOUNT := (TOTAL DUE * 0.15) .

 modify records

 TOTAL DUE := (TOTAL DUE - temp DISCOUNT) .

 end

This script tells DataEase: (1) Create (define) a temporary variable called DISCOUNT to store
a number while processing the current script, (2) find all the RESERVATIONS records that
have a value greater than $4000 in the TOTAL DUE field, (3) give (assign) the DISCOUNT
variable a number value determined by multiplying the TOTAL DUE on each invoice by 15%,
and (4) modify these RESERVATIONS records by subtracting the value of the DISCOUNT
variable from the value in the TOTALDUE field.

© DataEase International Ltd

338

textpos
Type
Text Function
Purpose
The textpos function returns the first position of a substring in a specified text value.
Syntax
textpos("TEXT VALUE" | FIELDNAME, "SUBSTRING")

Returns
An integer value that indicates the position where the substring begins in the specified text
value.
Usage
The textpos function is not case sensitive (no distinction is made between upper and lower
case letters).
If the substring is contained in the specified text value, the starting position of the first
(leftmost) character in the substring is returned.
If the substring is not contained in the text value, the function returns 0. Intervening spaces and
punctuation symbols are included in the calculation. Trailing spaces are ignored.
Examples
textpos("Buccaneer's Creek" , "can")

Returns: 4

textpos("Sapphire International" , "national")

Returns: 15

textpos(CLUB NAME, "bus") ,

Returns: The first position of the string bus in every record that is processed. If a record
contains the value Columbus Island in the CLUB NAME field, the function returns 6.

Note: textpos interprets wildcard symbols like “*” as a character, rather than a wildcard. It can
therefore be used to detect the presence of such wildcard characters in a text string

© DataEase International Ltd

339

timeampm
Type
Time Function
Purpose
The timeampm function converts a time value from a 24-hour format to a 12-hour format and
appends the appropriate AM or PM designation.
Syntax
timeampm(TIME VALUE)

Returns
A text value representing the 12-hour clock time with a suffix of either AM or PM. Converts
time values from midnight (00:00:00) to (11:59:59) to AM. Converts time values from noon
(12:00:00) to (23:59:59) to PM.
Examples
timeampm(13: 53: 12)

Returns: 01: 53: 12 PM

timeampm(11: 10: 30)

Returns: 11: 10: 30 AM

timeampm(DEPARTURE TIME)

Returns the value in the DEPARTURE TIME field in the 12-hour clock format and adds the
correct suffix for every record that is processed. If a record contains the value 19:30:25 in the
DEPARTURE TIME field, the function returns 07:30:25 PM.

© DataEase International Ltd

340

tran off
Type
Control Command
Purpose
The tran off command is used to turn off the DataEase default transaction management and
data locking facilities and switch DQL processing into tran off mode when accessing data in an
SQL database.
DQL Procedures can be run in either tran on mode (the default mode) or tran off mode.
In tran on mode, DataEase treats any procedure that adds, modifies, or deletes data as a
transaction (the procedure is processed as a single unit of work) as long as there are no
explicit begin transaction and commit commands. When DataEase is processing a procedure
in tran on mode, it automatically provides the necessary commands to lock and unlock data
and ensure that each transaction is either fully completed or rolled back.
In tran off mode, DataEase processes each record as a separate transaction. No DQL actions
are grouped together as a transaction and no multi-user data locking rules are enforced.
Syntax
tran off .

Usage
A DQL Procedure can contain any number of tran off and tran on commands. By using the tran
on and tran off commands to turn the DataEase transaction management facilities on and off,
you can link regular Processing procedures and Transaction Processing procedures together
in the same Control procedure (see the example on the next page).
Once DataEase enters tran off mode, it remains in this mode until it reaches a tran on
command or the end of the whole procedure.
Example

tran off .

record entry "RESERVATIONS" .

tran on .

run procedure "PRINT RESERVATIONS" .

This script tells DataEase: (1) Turn off the default transaction management and data locking
facilities, (2) display the RESERVATIONS form so the user can enter new reservations, (3)
when the user finishes entering records, turn the transaction management facilities back on,
and (4) run the PRINT RESERVATIONS Processing procedure.

Note: Because it reduces the amount of data locking the server must perform, the tran off
command can significantly improve the performance of a procedure. However, DataEase
provides no concurrency control when processing records in tran off mode.
For this reason, we recommend that procedures that contain tran off commands should only
be run when no one else is accessing the SQL tables referenced in the script.

© DataEase International Ltd

341

tran on
Type
Control Command
Purpose
The tran on command is used when accessing data in an SQL database to turn on the
DataEase default transaction management and data locking facilities after they have been
disabled by the tran off command.
DQL Procedures can be run in either tran on mode (the default mode) or tran off mode.
In tran on mode, DataEase treats any procedure that adds, modifies, or deletes data as a
transaction (the procedure is processed as a single unit of work) as long as there are no
explicit begin transaction and commit commands. When DataEase is processing a procedure
in tran on mode, it automatically provides the necessary commands to lock and unlock data
and ensure that each transaction is either fully completed or rolled back.
In tran off mode, DataEase processes each record as a separate transaction.No DQL actions
are grouped together and no multi-user data locking rules are enforced.
Syntax
tran on .

Usage
A DQL Procedure can contain any number of tran on and tran off commands. By using the tran
on and tran off commands to turn the DataEase transaction management facilities on and off,
you can link regular Processing procedures and Transaction Processing procedures together
in the same Control Procedure (see the example on the next page).

Note: DataEase is always in tran on mode at the start of a DQL Procedure and remains in this
mode until processing reaches a tran off command.
Example

tran off .

record entry "RESERVATIONS" .

tran on .

run procedure "PRINT RESERVATIONS" .

This script tells DataEase: (1) Turn off the default transaction management and data locking
facilities, (2) display the RESERVATIONS form so the operator can enter new reservations, (3)
when the user finishes entering records, turn the transaction management facilities back on,
and (4) run the PRINT RESERVATIONS Processing procedure.

Note: Because it reduces the amount of data locking the server must perform, the tran off
command can significantly improve the performance of a procedure. However, DataEase
provides no concurrency control when processing records in tran off mode.
For this reason, we recommend that procedures that contain tran off commands should only
be run when no one else is accessing SQL tables referenced by the script.

© DataEase International Ltd

342

Transaction Processing
Type
Concept
Purpose
Transaction processing is a technique that lets you enter, modify, and delete records in
multiple tables using input from a single form. A transaction processing procedure lets you
update the information in the database without having to physically enter the data into each
form in record entry mode. Because it saves time and reduces the possibility of keying errors,
transaction processing is widely used for point-of-sale applications to automate customer
billing and inventory maintenance.
Usage
With DataEase, each transaction is entered using a Data-entry form or an input using
command. After the data is entered, it is processed by a predefined DQL Procedure that
automatically posts the information into the appropriate related tables.

© DataEase International Ltd

343

unlock
Type
Processing Command
Purpose
The unlock command is functional only when running DataEase on a LAN (Local Area
Network). The unlock command unlocks locked tables or records allowing other users full
access to the data.
Syntax
unlock all files .

unlock file TABLENAME .

unlock selected record .

Usage
The unlock all files command unlocks all tables referenced by the procedure. If unlock all files
is the first statement in the script, the default locking rules are overridden and all data is locked
by individual records. You may lock tables on a selective basis using the lock file command.
The unlock file command unlocks the specified table for the duration of the procedure, or until
the same table is specified in a lock command. In a script that begins with a lock all files
statement, the unlock file command lets you unlock tables selectively, while the other tables
referenced by the script remain locked.
The unlock selected record command unlocks the record that is currently being processed. If
the default locking rules are overridden by an unlock all files or unlock file command, DataEase
automatically locks a record from the time it is selected for processing until the next record is
selected. Often, significant processing not involving the locked record may take place. By
using the lock and unlock selected record commands, you can reduce the amount of time a
record remains locked.
LAN
The default LAN Multi-User Locking Options resolve conflicts that arise when users attempt to
view, modify, or delete records in a table while data in that table is being accessed by a
procedure. If another user is currently using a resource required by the unlock command,
DataEase displays a Resource Conflict message. While this message is displayed, DataEase
automatically tries to execute the command at brief intervals.
When the required resource becomes available, DataEase automatically resumes processing
and executes the rest of the procedure.

© DataEase International Ltd

344

Example
In order to override the default locking rules, the first statement of a script must be either lock
all files or unlock all files. If neither of these commands appears at the start of the script, the
default locking rules govern LAN functioning until a lock or unlock command appears in the
script. All lock and unlock commands are automatically terminated at the end of a script.

 lock file RESERVATIONS shared .

 for MEMBERS with (sum of

 RESERVATIONS TOTAL DUE > 5000) ;

 lock selected record .

 list records

 LAST NAME ;

 TOTAL DUE .

 unlock selected record .

 end

 for MEMBERS with (highest of

 RESERVATIONS DEPARTURE DATE < 01/01/99) ;

 delete records .

 end

This script tells DataEase: (1) Lock the RESERVATIONS table so other users can view
records but cannot add, delete or modify RESERVATIONS records during the processing of
this procedure, (2) select all the MEMBERS records whose related RESERVATIONS records
have a combined TOTAL DUE greater than $5000, (3) lock each MEMBERS record as it is
selected for further processing. For each record selected, list the member's LAST NAME and
TOTAL DUE, and (4) after each record is listed, unlock the record before continuing to the next
part of the script.
Locking the RESERVATIONS table at the start of this procedure prevents other users from
entering new records that might alter the sum of calculation. Locking and unlocking each
MEMBERS record as it is listed prevents the TOTAL DUE information from being modified by
another user.

© DataEase International Ltd

345

unlock db (unlock database)
Type
Control Command
Purpose
The unlock db command is functional only when running DataEase on a LAN (Local Area
Network). The unlock db cancels the effect of the lock db command; it unlocks a locked
database.
Syntax
unlock db .

Returns
A confirmation message appears on the screen as soon as the database is unlocked.
LAN
On a LAN, if another user is currently using a resource required by the unlock db command,
DataEase displays a Resource Conflict message. While this message is displayed, DataEase
automatically tries to execute the command at brief intervals.
When the required resource becomes available, DataEase automatically resumes processing
and executes the rest of the procedure.
Usage
Once a database is locked by the lock db command it remains locked until an unlock db
command is executed or until the user who initiated the lock db command exits from
DataEase.
Example

lock db .

record entry "MEMBERS" .

run procedure "PRINT RESERVATIONS" .

unlock db .

This script tells DataEase: (1) Lock the current database, (2) display the MEMBERS form so
an operator can enter new member records, (3) when the operator finishes entering records,
run the PRINT RESERVATIONS procedure, and (4) unlock the current database.

Note
There's an important difference between the unlock Processing command and the unlock db
Control command. The unlock Processing command can be used to unlock individual forms or
records during a Processing procedure. The unlock db command is used to cancel the effect of
the lock db Control command; it unlocks the whole database.

© DataEase International Ltd

346

upper
Type
Text Function
Purpose
The upper function converts each letter in a text value to uppercase.
Syntax
upper(TEXT VALUE)

Returns
The specified text value with all the letters in uppercase.
The upper function only affects the alphabetical letters a-z. Numeric values are not converted
to their Shift key equivalents.
Examples
upper("DataEase")

Returns: DATAEASE

upper("Cancun")

Returns: CANCUN

upper(LAST NAME)

Returns the value in the LAST NAME field in uppercase type for every record processed. If a
record contains the value Birnbaum in the LAST NAME field, the function returns BIRNBAUM.

© DataEase International Ltd

347

value
Type
Command component
Purpose
The value keyword is a component of the case command syntax. When processing a case
command, DataEase compares the expression that follows case to each of the statements
specified by the keyword value in the order they appear in the script. When DataEase reaches
the first true comparison, it executes all the actions between that value statement and the next.
If none of the specified value comparisons is true, DataEase executes the actions specified
after the keyword others. As soon as all actions following any value or others statement are
executed, processing passes to the first action following the end command for the case
statement.
Syntax
case (EXPRESSION)

value COMPARISON 1 :

ACTION SERIES 1 .

[value COMPARISON 2 :

ACTION SERIES 2 .

.

.

value COMPARISON N :

ACTION SERIES N .]

[others :

DEFAULT ACTION SERIES .]

end

Usage
The case command requires a case expression, one comparison value, and an end command.
Subsequent value statements, actions, and the others keyword are optional. If others is used,
it must follow all the specified comparison values.
Example
 case (current user name)

 value "FRANK" :

 call menu " SITE ADMINISTRATION " .

 others :

 call menu " MAIN MENU " .

 end

This script tells DataEase: (1) If the current user is Frank, display the SITE ADMINISTRATION
menu, and (2) if the current user is anyone other than Frank, display the MAIN MENU.

© DataEase International Ltd

348

variable
Type
Concept
Purpose
A variable is a substitute for another value.
In a script, a variable can be substituted for any expression that returns a value or for any type
of field except a Choice field. Often a variable is used to store a numeric value that can change
during the processing of a procedure (like a running total when adding a column of figures).
The stored value can be used like any other value in the script; it is referenced by the
variable's name.
Usage
The name of a variable can be any unique name, up to 20 characters in length. The name
must be enclosed in quotes when it first appears, and be preceded by either the global or temp
keyword.
The status of a variable is either current, global, or temporary.
The current variables are system-defined variables that hold commonly used system values
such as current date, current time, current user name, etc. Because these variables are
system-generated, you don't need to define them in a script prior to using them.
A global variable can pass its value from one procedure to another. In order to do this, the
variable must be defined identically in each procedure in which it is used.
A temporary variable can store a value only during a single procedure.
There is a separate entry in this Language Reference for each of these groups.

Note: Because the value in a variable is typically accumulated as each record is processed,
you cannot successfully sort (e.g., using in order or in groups) the value stored in the variable.

© DataEase International Ltd

349

variance
Type
Statistical Operator
Purpose
The variance operator calculates the average of the squared deviations from the mean (the
average of the squared difference between each item value and the mean value) in a set of
data. The result usually appears as a statistic in the summary area at the end of each group or
the end of the report.
Syntax
FIELDNAME|VARIABLE : variance [other

statistical operators] ; | .

Returns
A numeric value.
Usage
Variance is used as an indicator of variability in a set of data.
The variance operator can also be used when creating a report using Query by Model. To
generate the variance in Query by Model, highlight the column whose variance you want to
calculate, then select variance in the Summarize pick list.
Example
 for MEMBERS with TOTAL DUE > 175 ;

 list records

 LAST NAME in order ;

 TOTAL DUE : item mean sum variance .

 end

This script tells DataEase: (1) Process all the MEMBERS records that have a value greater
than $175 in the TOTAL DUE field, (2) list the members by LAST NAME in alphabetical order,
and (3) list each member's TOTAL DUE and include the mean, sum, and variance of all the
TOTAL DUE amounts in the report output.
The output from this query might look as follows:

Last Name Total Due
Christino $280.00
Perrault $215.00
Stafford $185.00
Strachan $205.00
Mean Total Due: $221.25
Sum Total Due $885.00
Variance in data set: $1689.58

© DataEase International Ltd

350

weekday
Type
Date Function
Purpose
The weekday function converts a date value to an integer that corresponds to the day of the
week from 1 (Monday) to 7 (Sunday).
Syntax
weekday(DATE VALUE)

Returns
An integer value from 1 to 7.
Examples
weekday(12/31/99)

Returns: 5

spellweekday (weekday(12/31/99))

Returns: Friday

weekday(DATE)

Converts the value in the DATE field into an integer from 1 to 7 for every record processed. If a
record contains the value 10/31/00 (a Sunday), the function returns 7.

© DataEase International Ltd

351

while
Type
Procedural Command
Purpose
Like the if command, the while command executes a series of actions based on whether a
specified condition is true. Unlike the if command, the while command creates a processing
loop in which actions are executed repeatedly as long as the specified condition remains true.
When processing reaches a while command, DataEase evaluates the condition that follows
the keyword while. If the specified condition is true, DataEase executes all the actions that
follow the keyword do until it reaches the corresponding end command.
DataEase then reevalutes the original condition. If the condition is still true, DataEase executes
the do action series again. If the condition is false, processing passes to the first action
following the end command for the while statement.
Syntax

while CONDITION do

ACTION 1 .

[ACTION 2 .

.

.

ACTION N .]

end

Usage
Frequently, a while command specifies an initial condition that is modified during each pass
through the loop (for example, a counter). Any action that modifies the value to be reevaluated
must be included in the loop (i.e., it must precede the end command that terminates the loop.)

© DataEase International Ltd

352

Example
define temp "CRUISE TICKET NUM" Number .

assign temp CRUISE TICKET NUM := 0 .

while temp CRUISE TICKET NUM < 1000 do

 temp CRUISE TICKET NUM := temp CRUISE TICKET NUM + 1 .

 list records

 jointext (" Boarding Pass No.: " ,

 temp CRUISE TICKET NUM) .

end

This script tells DataEase: (1) Create (define) a temporary variable called CRUISE TICKET
NUM, (2) give (assign) an initial value of 0 to the CRUISE TICKET NUM variable, (3) print a
series of labels joining the words Boarding Pass No.: to the number currently stored in the
CRUISE TICKET NUM variable, (4) while printing the labels, increment the variable by one
each time a new label is printed, and (5) when the value of the variable reaches 1000, stop
printing labels.
The while command tells DataEase to reevaluate the value of the variable each time it prints a
label. As long as that value is less than 1000, DataEase prints another label. When the value
of the variable reaches 1000, DataEase stops performing the action following the do keyword.

© DataEase International Ltd

353

with
Type
Operator
Purpose
The with operator specifies the criteria for selecting records in a table or a relationship.
Syntax
with (SELECTION CRITERIA)

Usage
The with operator tells DataEase to process some rather than all the records in the specified
table. The records that are selected for processing are those that satisfy the selection criteria
that follow the with operator.

Example 1
 for MEMBERS with TOTAL DUE > 150 ;

This statement tells DataEase to process only those MEMBERS records that contain a value
greater than $150 in the TOTAL DUE field.

Example 2
 delete records in RESERVATIONS named "OUTDATED"

with (DATE < 01/01/99) .

This statement tells DataEase to delete the records in the "OUTDATED" relationship (the
RESERVATIONS records that are dated before 01/01/1999).

© DataEase International Ltd

354

year
Type
Date Function
Purpose
The year function extracts the year from a date value.
Syntax
year(DATE VALUE)

Returns
An integer value from 0 to 99 (inclusive). The date format selected in Windows Control Panel
changes the date sequence but does not affect which value is returned by a Date function.
If the year function is used on an extended date field or variable, it will return a four digit
numeric string from 1776 to 9999.
Examples
year(12/31/99)

Returns: 99 (most North American formats)

year(31/12/99)

Returns: 99 (most European formats)

year(99/12/31)
Returns: 99 (Metric format)

year(DATEFIELD)

Converts the year portion of the value in the DATE field into an integer from 0 to 99 for every
record processed. If a record contains the value 12/31/99 in the DATE field, the function
returns 99.

© DataEase International Ltd

355

yearday
Type
Date Function
Purpose
The yearday function converts a date value to the Julian day of the year (1-366).
Syntax
yearday(DATE VALUE)

Returns
An integer value from 1 to 366 (inclusive). The date format selected in Windows Control Panel
changes the date sequence but does not affect which value is returned by a Date function.

Examples
yearday(12/31/99)

Returns: 365 (most North American formats)

yearday(31/12/99)

Returns: 365 (most European formats)

yearday(95/12/31)

Returns: 365 (Metric format)

yearday(DATE)

Converts the day portion of the value in the DATE field into an integer from 1 to 366,
representing the Julian date, for every record processed. If a record contains the value
12/31/00 (a Leap Year) in the DATE field, the function returns 366.

© DataEase International Ltd

356

yearweek
Type
Date Function
Purpose
The yearweek function calculates the week number (1-53) of a date value.
Syntax
yearweek(DATE VALUE)

Returns
An integer value from 1 to 53 (inclusive). The date format selected in Windows Control Panel
changes the date sequence but does not affect which value is returned by a Date function.
Usage
This yearweek function always counts January 1st-7th as Week1, January 8th-14th as Week
2, etc. In a non-Leap Year, the only day in Week 53 is December 31st. In a Leap Year,
December 30th is also counted in Week 53 (all dates following February 28 are affected by
leap year).
Examples
yearweek(01/01/99)

Returns: 1

yearweek(12/30/99)

Returns: 52 (most North American formats)

yearweek(30/12/99)

Returns: 52 (most European formats)

yearweek(99/12/30)

Returns: 52 (Metric format)

yearweek(DATE)

Converts the day portion of the value in the DATE field into an integer from 1 to 53,
representing the week of the year, for every record processed. If a record contains the value
12/30/96 (a Leap Year) in the DATE field, the function returns 53.

© DataEase International Ltd

357

Index

- - (comment), 165
- (subtraction), 152
" " (quotation marks), 161
() (parentheses), 158
* (asterisk), 154
* (multiplication), 153
. (period), 159
/ (division), 153
: (colon), 157
:= (assignment operator), 162
; (semicolon), 160
? (question mark), 155
~ (tilde), 156
+ (addition), 152
< (less than), 163
<= (less than or equal to), 163
= (equals), 163
> (greater than), 164
>= (greater than or equal to), 164
abs (absolute value), 166
acos (arccosine), 167
ad hoc relationship, 168
all, 170
ampm, 172
and, 173
any, 174
application status, 175
asin (arcsine), 176
assign, 177
atan (arctangent), 178
atan2 (arctangent 2), 179
backup db, 180
begin transaction, 181
between, 183
blank, 184
Body of a Procedure, 30
break, 185
Calculate a Percentage, 114

call menu, 186
call program, 187
case, 188
ceil, 190
Check DQL Option, 25
Clearing a DQL, 41
Client-Server Environment, 91
Combining SQL and DQL, 92
Commands, 14
comment, 191
Comments, 19
commit, 192
Comparison Operators, 194
Conditional Statistical Operators, 195, 296
Constant Value, 197
Control Commands, 68
Control Procedure, 198
Control Procedures, 68
copy all from, 199
Copying Scripts, 23
Copyright, 10
cos (cosine), 200
cosh (hyperbolic cosine), 200
count, 201
count of, 203, 204
Create a Report, 55
Creating a Data-Entry Form, 47
Creating a DQL, 23
current, 205
Cursor Movement, 37
Data Access Restrictions, 26
Data Entry Methods, 51
Database Objects, 17
data-entry, 207
Data-Entry Form, 32
date, 208
day, 209
db status, 210

© DataEase International Ltd

358

Deadlocks, 141
define, 211
delete records, 213
Deleting a DQL, 27
Detecting Deadlocks, 143
Displaying a Data-Entry Form, 48
Displaying Pick Lists, 39
do, 214
DQL Basics, 12
DQL Help, 20
DQL Script Menu, 38
DQL Security, 26
DQL Tech Tips, 99
DQL Toolbar, 45
DQL View Menu, 45
Duplicate Records, 127
else, 215
end, 216
enter a record, 218
error messages off, 219
error messages on, 220
Errors, 64
exec SQL, 221
Executing a DQL, 27
exit, 225
exp, 226
export, 227
firstc, 229
firstlast, 230
firstw, 231
floor, 232
for, 233
Formatting DQL Output, 53
Functions, 16, 236
futurevalue, 237
General Operators, 296
global, 238
Grouping, 240
Grouping/Sorting Operators, 296
Help, 20
highest of, 242
hours, 243

if Command, 244
if Function, 246
import, 249
in, 250
in groups, 251
in order, 253
in reverse, 255
Inner Joins, 132
input using, 256
Insert ASCII into DQL, 40
install application, 260
installment, 261
Interactive Pick Lists, 36
item (Conditional Statistical Operator), 263
item (Statistical Operator), 262
Joining Tables, 131
jointext, 264
julian, 265
lastc, 266
lastfirst, 267
lastw, 268
length, 269
list records, 60, 270
Loading a DQL, 27
lock, 272
lock db (lock database), 274
log, 275
log10, 275
lower, 276
lowest of, 277
many-to-one, 55
max, 278
mean, 279
mean of, 280
message, 281
Message Command, 282
midc, 285
midw, 286
min, 287
minutes, 288
mod (modulus), 289
Modify Records, 290

© DataEase International Ltd

359

month, 291
Multiple Printouts, 120
Multiple Selection Criteria, 104
named, 292
Nested Actions, 294
not, 295
one-to-many, 55
Operators, 15, 296
or, 297
others, 298
output, 299
Page Footer, 31
Page Header, 31
percent, 300
periods, 301
power, 302
presentvalue, 303
Preventing Deadlocks, 146
Primary Table, 304
Printing a Procedure Definition, 34
Procedural Commands, 68, 305
Procedure Layout, 65
Processing Commands, 68
Processing Procedure, 306
proper, 307
query selection, 308
random, 310
rate, 311
record entry, 312
Relational Operators, 62, 296
Relational Statistical Operators, 296,

313
Relationships, 17, 314
reorganize, 315
Resizeable Panels, 36
restore db, 316
rollback, 317
run procedure, 319
Saving, 67
Saving a Data-Entry Form, 52
Saving a DQL, 24
script, 21

Script, 29
Script Editor, 23
Script Preferences Dialog, 41
Search and Replace, 43
Search Dialog Options, 42
Searching for a Text String, 42
Secondary table, 320
seconds, 321
Security, 26
Selecting Records, 57
Selection Criteria, 58, 322
sin, 323
sinh, 323
Sorting, 324
Sorting and Grouping, 60
Specifying Selection Criteria, 58
spellcurrency, 325
spelldate, 326
spellmonth, 327
spellnumber, 328
spellweekday, 329
SQL Tech Tips, 129
SQL User Permissions, 98
sqrt (square root), 330
Start a New DQL, 22
Statistical Operators, 331
std.dev. (standard deviation), 332
std.err. (standard error), 333
Stored Procedures, 138
sum, 334
sum of, 335
Summary Footer, 32
Summary Header, 32
Symbols, 18, 151
tan (tangent), 336
tanh (hyperbolic tangent), 336
temp, 337
textpos, 338
timeampm, 339
Trademark, 10
tran off, 340
tran on, 341

© DataEase International Ltd

360

Transaction Processing, 91, 342
Typographical Conventions, 13
unlock, 343
unlock db, 345
upper, 346
Using the Script Editor, 35
value, 347
Values, 18
variable, 348

Variables, 18
variance, 349
weekday, 350
while, 351
with, 353
year, 354
yearday, 355
yearweek, 356

	Chapter I : Basic Concepts
	
	
	The Basic DQL Vocabulary 	14
	Printing the Procedure Definition 	34

	Chapter 1 : DQL Environment
	
	
	Setting Preferences for the DQL Script Editor 	41
	Searching and Replacing a Text String 	43

	Chapter 2 : DQL Enhancements
	
	
	Creating a DQL Data-Entry Form and Layout 	46
	Using a Relationship to Specify Data-Entry Values 	50

	Chapter 3 : List Records
	Chapter 4 : Control Procedures
	
	
	Procedure 2: CALCULATE DISCOUNTS 	78
	Procedure 3: RESERVATION INVOICES 	85
	Procedure 4: PROCESS RESERVATIONS 	89
	Summary 	90

	Chapter 5 : Transaction Processing
	
	
	Using SQL Commands in a DQL Procedure 	92
	Using Explicit Transactions to Enhance a DQL 	93

	Chapter 6 : DQL Tech Tips
	
	
	DQL Tech Tips: How to 	99

	Chapter 7 : SQL Tech Tips
	
	
	SQL Tech Tips: How to
	Deadlocks: How to 	141

	Chapter 8 : DQL Lexicon
	Copyright and Trademarks
	Acknowledgments
	
	
	Engineering
	Quality Assurance
	Documentation
	Marketing
	Training

	Chapter 1 : DQL Basics
	Welcome to the DQL Programmer's Guide
	Typographical Conventions
	The Basic DQL Vocabulary
	Getting Help on DQL Keywords and Concepts
	How to Access DQL Help
	General Steps for Creating a DQL Procedure
	Starting a New DQL Procedure
	How to Start a New DQL Procedure
	Creating a DQL Script
	Using the Script Editor to Create a Script
	Copying from One Script to Another
	How to Create a DQL Script
	Saving a DQL Procedure
	Using the Check DQL Option
	How to Use the Check DQL Option
	How Security Works with DQL Procedures
	How Security Affects DQL Procedures
	Data Access Restrictions
	Loading a DQL Procedure
	Executing a DQL Procedure
	Deleting a DQL Procedure
	MEMBER LIST: Basic DQL Procedure
	Parts of a DQL Procedure
	Script
	Body of a Procedure
	Page Header and Page Footer
	Summary Header and Summary Footer
	Data-Entry Form
	Printing the Procedure Definition
	Chapter 1 : DQL Environment
	Using the DQL Script Editor
	Viewing the DQL Script Editor
	Parts of the DQL Script Editor
	Interactive Pick Lists
	Resizeable Panels
	Moving the Cursor in the DQL Script Editor Window
	Cursor Movement in the DQL Script Editor
	DQL Script Menu
	Checking a DQL Script
	Displaying Pick Lists
	Loading and Saving a DQL Script as an ASCII Text File
	How to Insert an ASCII Text File into a DQL Script
	How to Save a DQL Script as an ASCII Text File
	Clearing the DQL Script Editor
	Setting Preferences for the DQL Script Editor
	Script Preferences Dialog Options
	Searching for a Text String
	Search Dialog Options
	Searching and Replacing a Text String
	Search and Replace Dialog Options
	How to Search for and Replace Text in a DQL Script

	Moving Backward and Forward in a Search
	DQL View Menu Options
	DQL Toolbar
	Chapter 2 : DQL Enhancements
	Creating the Data-Entry Form and Layout of a DQL Procedure
	Creating a Data-Entry Form
	How to Create a Data-entry Form
	Displaying the Data-Entry Form
	Using the Data-Entry Form
	Using a Relationship to Specify Data-Entry Values
	Alternatives to Using a Data-Entry Form
	Data Entry Methods
	Saving the Data-Entry Form
	Modifying a Data-Entry Form
	Formatting DQL Output
	Chapter 3 : List Records
	Using DQL to Create a Report
	The Purpose of the Query: A Report
	Telling DataEase Which Records to Select
	Creating the Script
	The for Command
	Specifying Selection Criteria in a Query
	Using the list records Command
	Sorting and Grouping Data in a Query
	Sorting and Grouping Operators
	Displaying Data from a Related Form
	Relational Operators
	Checking a Script for Errors
	Creating a Procedure Layout
	Saving and Running a Procedure
	Chapter 4 : Control Procedures
	Using DQL to Manage Your Application
	Types of DQL Commands
	Procedure 1: INPUT RESERVATIONS
	Script for the INPUT RESERVATIONS Procedure
	Explanation of the Script
	Current Status Values
	Saving the Procedure
	Procedure 2: CALCULATE DISCOUNTS
	Script for the CALCULATE DISCOUNTS Procedure
	Explanation of the Script
	Procedure 3: RESERVATION INVOICES
	Script for the RESERVATION INVOICES Procedure
	Explanation of the Script
	Script for the PROCESS RESERVATIONS Control Procedure
	Explanation of the Control Procedure
	Summary
	Chapter 5 : Transaction Processing
	Using SQL Commands in a DQL Procedure
	Using Explicit Transactions to Enhance a DQL Procedure
	Modified INPUT RESERVATIONS Script
	Explanation of the Modified Script
	SQL User Permissions
	SQL User Permissions for DQL Procedures
	Chapter 6 : DQL Tech Tips
	
	
	How to Organize the Commands in a Simple Script 	100
	How to Choose the Primary Table in a Multi-Table Procedure 	103
	How to Combine Multiple Selection Criteria using and and or 	104
	How to Add Group Totals and Grand Totals to a Report 	105
	How to List Individual Field Values from a Related Table 	107
	How to Use Indexes to Improve DQL Processing Speed 	109
	How to Post Totals to Another Table 	113
	How to Calculate a Percentage 	114
	How to Count the Number of Groups in a Report 	116
	How to Count the Number of Records in a Group 	118
	How to Produce Multiple Printouts of Each Record in a Report 	120
	How to Create an Accounts Receivable Aging Report 	122
	How to Sort the Values in a Choice List Field 	125
	How to List the First Several Records in a Table 	126
	How to Find and List Duplicate Records 	127

	How to Organize the Commands in a Simple Script
	
	
	Question
	Solution
	Sample Output 1
	State	 Name
	Example 2
	SampleOutput 2
	Name		State
	Example 3
	SampleOutput 3
	State	 Name
	Example 4
	Discussion
	Tip

	How to Choose the Primary Table in a Multi-Table Procedure
	
	
	Question
	Solution
	Discussion

	How to Combine Multiple Selection Criteria using and and or
	
	
	Question
	Solution
	Example 1
	Example 2
	Example 3
	Caution

	How to Add Group Totals and Grand Totals to a Report
	
	
	Question
	Solution
	Example
	Sample Output
	Tip

	How to List Individual Field Values from a Related Table
	
	
	Question
	Solution
	Example 1
	Example 2
	Sample Output
	Tip

	How to Use Indexes to Improve DQL Processing Speed
	
	
	Question
	Solution
	Example
	Example 1
	Example 2
	Example 3
	Example 4
	Discussion
	Example 5
	Tip
	Caution

	How to Post Totals to Another Table
	
	
	Question
	Solution
	Example

	How to Calculate a Percentage
	
	
	Question
	Solution
	Example 1
	Example 2
	Example 3

	How to Count the Number of Groups in a Report
	
	
	Question
	Solution
	Example
	Tip
	Caution

	How to Count the Number of Records in a Group
	
	
	Question
	Solution
	Example 1
	Example 2
	Discussion
	Caution

	How to Produce Multiple Printouts of Each Record in a Report
	
	
	Question
	Solution
	Example
	Tip
	Caution

	How to Create an Accounts Receivable Aging Report
	
	
	Question
	Solution
	Example 1
	Sample Output 1

	How to Sort the Values in a Choice List Field
	How to List the First Several Records in a Table
	How to Find and List Duplicate Records
	
	
	Question
	Solution
	Example 1
	Discussion
	Tip
	Caution

	Chapter 7 : SQL Tech Tips
	
	
	Control Transactions in a DQL Procedure 	130
	Join Tables in a DQL Script 	131
	Specify an Explicit Inner Join in a DQL Procedure 	132
	Join Tables Stored on Different Engines 	133
	Join Two Independent One-to-Many Relationships 	134
	Avoid Redundant Processing in a DQL Procedure 	135
	Improve Processing Speed by Creating a View from Which to Query the Data 	136
	Use Stored Procedures in a DQL Script 	138
	Replace Explicit DQL Locking Commands by Creating a Semaphore 	139
	Avoid Deadlocks 	140
	Detect Deadlocks 	142
	Prevent Deadlocks 	143
	Improve Performance by Avoiding Inconvertible DQL Expressions 	145

	How to Control Transactions in a DQL Procedure
	
	
	Question
	Solution
	Example
	Discussion
	Tip

	How to Join Tables in a DQL Script
	
	
	Question
	Solution
	Example

	How to Specify an Explicit Inner Join in a DQL Procedure
	
	
	Question
	Solution
	Example
	Discussion
	Tip

	How to Join Tables Stored on Different Engines
	
	
	Question
	Solution
	Example
	Caution

	How to Join Two Independent One-to-Many Relationships
	
	
	Question
	Solution
	Example
	Discussion

	How to Avoid Redundant Processing in a DQL Procedure
	
	
	Question
	Solution
	Example 1

	How to Improve Processing Speed by Creating a View from Which to Query the Data
	
	
	Question
	Solution
	Example 1

	How to Use Stored Procedures in a DQL Script
	
	
	Question
	Solution
	Example
	Discussion
	Tip

	How to Replace Explicit DQL Table and Field Locking Commands in a Procedure by Creating a Semaphore
	
	
	Question
	Solution
	Example 1
	Example 2

	Deadlocks
	How to Avoid Deadlocks by Duplicating the Order in Which Tables Are Accessed in Multiple Scripts
	How to Detect Deadlocks
	
	
	Example

	How to Prevent Deadlocks
	
	
	Example

	How to Improve Performance by Avoiding Inconvertible DQL Expressions
	
	
	Question
	Solution

	Chapter 8 : DQL Lexicon
	Alphabetical Language Reference
	
	
	Returns
	Usage

	DQL Lexicon Typographical Conventions
	Symbols
	+ (addition)
	
	
	Type

	- (subtraction)
	
	
	Type

	/ (division)
	
	
	Type
	Example

	* (multiplication)
	
	
	Type

	* (asterisk)
	
	
	Type
	Example 2

	? (question mark)
	
	
	Type
	Example 2

	~ (tilde)
	
	
	Type

	: (colon)
	
	
	Type

	() (parentheses)
	
	
	Type

	. (period)
	
	
	Type
	Example

	; (semicolon)
	
	
	Type

	" " (quotation marks)
	
	
	Type
	Example

	:= (assignment operator)
	
	
	Type
	Example 1
	Example 2

	< (less than)
	
	
	Type

	<= (less than or equal to)
	
	
	Type

	= (equals)
	
	
	Type

	> (greater than)
	
	
	Type

	>= (greater than or equal to)
	
	
	Type

	- - (comment)
	
	
	Type
	Example

	abs (absolute value)
	
	
	Type

	acos (arccosine)
	
	
	Type

	ad hoc relationship
	
	
	Type
	Usage

	end�all
	
	
	Type
	Returns
	Example 2

	ampm
	
	
	Type
	Purpose

	and
	
	
	Type
	Example 1

	any
	
	
	Type
	Purpose
	Syntax
	Example

	application status
	
	
	Type
	Purpose
	Usage
	Example

	asin (arcsine)
	
	
	Type
	Purpose
	Returns
	Example

	assign
	
	
	Type
	Purpose
	Usage
	Example

	atan (arctangent)
	
	
	Type
	Purpose
	Returns
	Usage

	atan2 (arctangent 2)
	
	
	Type
	Purpose
	Returns
	Usage

	backup db (backup database)
	
	
	Type
	Purpose

	begin transaction
	
	
	Type
	Purpose
	Example 1
	Example 2

	between
	
	
	Type
	Purpose

	blank
	
	
	Purpose

	break
	
	
	Type
	Purpose
	Syntax
	Usage

	call menu
	
	
	Type
	Purpose

	call program
	
	
	Type
	Purpose
	Example 2

	case
	
	
	Type
	Purpose
	Usage

	ceil
	
	
	Type
	Purpose

	comment
	
	
	Type

	commit
	
	
	Type
	Purpose
	Usage
	Example 1

	Comparison Operators
	
	
	Type
	Examples

	Conditional Statistical Operators
	
	
	Type
	Usage

	Constant Value
	
	
	Type
	Example

	Control Procedure
	
	
	Type

	copy all from
	
	
	Type
	Purpose

	cos (cosine)
	
	
	Type
	Purpose

	cosh (hyperbolic cosine)
	
	
	Type
	Purpose

	count
	
	
	Type
	Purpose
	Example 1
	Example 2

	count of
	
	
	Type
	Purpose
	Syntax
	Example

	count of
	current
	
	
	Type

	data-entry
	
	
	Type

	date
	
	
	Type
	Purpose
	Returns
	Example 2

	day
	
	
	Type
	Purpose

	db status (database status)
	
	
	Type
	Purpose

	define
	
	
	Type
	Purpose
	Usage

	delete records
	
	
	Type
	Purpose
	Usage

	do
	
	
	Type

	else
	
	
	Type
	Purpose
	Syntax
	Example

	end
	
	
	Type
	Purpose
	Syntax
	Usage
	Example 2

	enter a record
	
	
	Type
	Purpose
	Syntax
	Usage

	error messages off
	
	
	Type
	Purpose

	error messages on
	
	
	Type
	Purpose

	exec SQL
	
	
	Type
	Purpose
	Usage
	Example

	exit
	
	
	Type
	Purpose

	exp
	
	
	Type

	export
	
	
	Type
	Purpose
	Example 3

	firstc
	
	
	Type
	Purpose

	firstlast
	
	
	Type
	Purpose

	firstw
	
	
	Type
	Purpose

	floor
	
	
	Type
	Purpose

	for
	
	
	Type
	Purpose
	Example 2

	Functions
	
	
	Type

	futurevalue
	
	
	Type
	Purpose
	Example 2

	global
	
	
	Type

	Grouping
	
	
	Type
	Example 2

	highest of
	
	
	Type
	Purpose
	Returns

	hours
	
	
	Type
	Purpose
	Returns

	if Command
	
	
	Type
	Purpose
	Usage

	if Function
	
	
	Type
	Purpose
	Example 2
	Example 4

	import
	
	
	Type
	Purpose

	in
	
	
	Type

	in groups
	
	
	Type

	in order
	
	
	Type
	Purpose
	Example

	in reverse
	
	
	Type
	Purpose
	Example

	input using
	
	
	Type
	Purpose
	Example 2

	install application
	
	
	Type
	Purpose
	LAN

	installment
	
	
	Type
	Purpose
	Example 1

	item (Statistical Operator)
	
	
	Type
	Purpose

	item (Conditional Statistical Operator)
	
	
	Type
	Purpose

	jointext
	
	
	Type
	Purpose

	julian
	
	
	Type
	Purpose

	lastc
	
	
	Type
	Purpose

	lastfirst
	
	
	Type
	Purpose

	lastw
	
	
	Type
	Purpose

	length
	
	
	Type
	Purpose

	list records
	
	
	Type
	Purpose
	Usage
	Example 2

	lock
	
	
	Type
	Purpose
	Example 1

	lock db (lock database)
	
	
	Type
	Purpose

	log
	
	
	Type
	Purpose

	log10
	
	
	Type
	Purpose

	lower
	
	
	Type
	Purpose

	lowest of
	
	
	Type
	Purpose
	Type
	Purpose

	mean
	
	
	Type
	Purpose

	mean of
	
	
	Type
	Purpose

	message
	
	
	Type
	Purpose

	Message Command Beep Parameters
	midc
	
	
	Type
	Purpose
	Syntax
	Returns
	Usage
	Examples

	midw
	
	
	Type
	Purpose

	min
	
	
	Type
	Purpose

	minutes
	
	
	Type
	Purpose
	Syntax
	Returns
	Examples

	mod (modulus)
	
	
	Type
	Purpose

	Modify Records
	
	
	Type
	Purpose
	Syntax
	Usage

	month
	
	
	Type
	Purpose

	named
	
	
	Type
	Purpose

	Nested Actions
	
	
	Type

	not
	
	
	Type
	Purpose
	Caution

	Operators
	
	
	Type

	or
	
	
	Type

	others
	
	
	Type
	Purpose
	Usage

	output
	
	
	Type
	Purpose

	percent
	
	
	Type
	Purpose

	periods
	
	
	Type
	Purpose
	Examples

	power
	
	
	Type
	Purpose

	presentvalue
	
	
	Type
	Purpose
	Example 2

	Primary Table
	
	
	Type

	Procedural Commands
	
	
	Type

	Processing Procedure
	
	
	Type

	proper
	
	
	Type
	Purpose
	Examples

	query selection
	
	
	Type
	Purpose
	Caution
	Usage

	random
	
	
	Type
	Purpose
	Examples

	rate
	
	
	Type
	Purpose

	record entry
	
	
	Type
	Purpose

	Relational Statistical Operators
	
	
	Type
	Purpose
	Usage

	Relationships
	
	
	Type

	reorganize
	
	
	Type
	Purpose
	Example 1

	restore db (restore database)
	
	
	Type
	Purpose

	rollback
	
	
	Type
	Purpose

	run procedure
	
	
	Type
	Purpose

	Secondary table
	
	
	Type

	seconds
	
	
	Type
	Purpose

	Selection Criteria
	
	
	Type

	sin
	
	
	Type
	Purpose

	sinh
	
	
	Type
	Purpose

	Sorting
	spellcurrency
	
	
	Type

	spelldate
	
	
	Type
	Purpose

	spellmonth
	
	
	Type
	Purpose

	spellnumber
	
	
	Type
	Purpose

	spellweekday
	
	
	Type
	Purpose

	sqrt (square root)
	
	
	Type
	Purpose

	Statistical Operators
	
	
	Type
	Purpose

	std.dev. (standard deviation)
	
	
	Type
	Purpose

	std.err. (standard error)
	
	
	Type
	Purpose

	sum
	
	
	Type
	Purpose
	Example

	sum of
	
	
	Type
	Purpose

	tan (tangent)
	
	
	Type
	Purpose

	tanh (hyperbolic tangent)
	
	
	Type
	Purpose

	temp
	
	
	Type
	Purpose
	Example

	textpos
	
	
	Type
	Purpose

	timeampm
	
	
	Type

	tran off
	
	
	Type
	Purpose

	tran on
	
	
	Type
	Purpose

	Transaction Processing
	
	
	Type

	unlock
	
	
	Type
	Purpose

	unlock db (unlock database)
	
	
	Type
	Purpose

	upper
	
	
	Type
	Purpose

	value
	
	
	Type
	Purpose
	Usage

	variable
	
	
	Type

	variance
	
	
	Type
	Purpose

	weekday
	
	
	Type
	Purpose
	Syntax

	while
	
	
	Type
	Purpose
	Usage

	with
	
	
	Type
	Purpose

	year
	
	
	Type
	Purpose

	yearday
	
	
	Type
	Purpose

	yearweek
	
	
	Type
	Purpose

	Index

