
© DataEase International Ltd

1

OML Scripting Guide
Introduction to OML Scripting .. 3

Definition of Terms ... 3

Defining an OML Script... 5
Using the Pick Lists .. 6

Variables in OML Scripts .. 7
Local Variables ... 7
Global Variables ... 7

DQL in OML Scripts... 8
Processing Commands .. 9
Sorting and Grouping Operators 9
Control Commands .. 10
Procedural Commands .. 10
Functions ... 11
Symbols and comparison operators 11
Relational Statistical Operators 12
Conditional Logic ... 12

Displaying Changes ... 13

Lost Scripts and Error Messages ... 14

Introduction to Events ... 15
What are Events? .. 15
The Event Return ... 15
Event Strings .. 16

The Event List ... 17
Keyboard Events ... 20
Introduction to Methods .. 21

The Method List .. 21

Introduction to Properties .. 23
The Property List ... 23

© DataEase International Ltd

2

Introduction to Objects .. 27
The Object List.. 27

Class Properties ... 50
Font .. 51
Color .. 55
Fill .. 57
Border ... 59
3D Class Properties ... 61
Shine .. 63
Shade .. 65
Rect ... 67
RectBorder.. 68
RectFill ... 70
ScrollBorder ... 72
ScrollFill ... 74
Child ... 76
Next ... 77
Prev .. 78

Example OML Scripts
Input Validation with PostEdit .. 79
ValueLoaded Event ... 80
Report Totals ... 82
Realtime Data Processing ... 83
Conditional Subform Display ... 85

Alphabetical List of OML Scripting Commands … 88

Index .. 89

© DataEase International Ltd

3

Introduction to OML Scripting
DataEase 6 introduces the ability to define OML Scripts, which can be attached to form objects.
An "Event" might be a mouse-click, or a field value changing. When an Event takes place, the
relevant OML script is triggered and runs like a piece of DQL.

OML Scripts can alter the appearance and contents of any object on your document. As an
extreme example, you could write an OML Script which - when a button is pressed - alters the
size, shape, colour, font, screen co-ordinates, and contents of every single object on your
document.

Additionally, OML Scripts can run a sub-set of DQL, so they can enter/modify/delete data, call
programs and procedures, and carry out most other tasks which are usually assigned to a DQL
procedure. (In fact, OML Scripts are part of DQL, but because the syntax is different, it is
convenient to refer to OML Scripts and DQL as if they were separate scripting languages).

Definition of Terms
Throughout this documentation you will repeatedly come across various object-oriented
programming terms. If you consulted six different technical works on Object Oriented
Programming, you would probably find six different definitions of such basic terms as "Object"
and "Method". The definitions given below are regarded as the most pertinent to DataEase.

Class
The prototype of an object, registered with DataEase or Windows. Sometimes called a
template.

Instantiation
The creation of an actual object from a prototype (the class) that defines what the object will
be.

 Object
An actual example of an object.
….…so when you create an edit box field on screen, you're actually instantiating an object of
the EditBox Class.

Control
Windows documentation frequently refers to both objects and classes as "controls". This
documentation shall simply refer to them as "objects", because version 7 of DataEase will
introduce ActiveX controls - hence the word 'control' is reserved for describing them.

Method
A function in an object which can be called externally – typically some sort of process relevant
to the object, such as "refresh the object’s screen display".

Event
Events are the means by which the object sends information back to DataEase - specifically,
the news that something has happened which might require attention. (More properly the
object reports the news to Windows, which then reports to DataEase).

© DataEase International Ltd

4

Event/Methods
It is common practise to give a method fired by an event the same name as the triggering
event. Hence an Event/Method consists of both an Event and a Method which, because of
their relationship, share the same name.

Property
A variable characteristic (for example Font Size, or Colour) of an object that can be accessed
by the DataEase developer – typically something which changes the behaviour or appearance
of the object.
Object Properties can be modified in one of two ways:
a) Via the object's various design-time Dialog Boxes used to create or modify aspects of the
object's Definition, Display, Font, Action, and Layout.
b) Via OMLt Scripts, which can change all the above values.

Data Model
The term Data Model is applied to the physical structure of the DataEase document(s) you are
currently working with - the Tables and their Relationships. (Open the QBM Dialogue to see
your current Data Model). The term schema describes the entire Data Model - every Table
and Relationship in the database.

Multiview
The term MultiView describes a run-time snapshot of the actual data held in your current Data
Model.

Simple Properties
A Simple property defines a single characteristic. For example, the Visble property defines
when an object is visible (MyObject.Visible := 1) or invisible (MyObject.Visible := 0).

Class Properties
A Class Property does not directly define properties. Instead it uses either Simple Properties
or other Class Properties to define properties.
For example, the Class Property Fill uses the Simple Properties Hatch and Style. But it also
uses the Class Property Color. If you wanted to use Fill to change the Style of an object, the
syntax would be: MyObject.fill.style := 3 .

But if you wanted to use Fill to change the colour of an object, the syntax would be:
MyObject.fill.color.red := 128 .

MyObject.fill.color.green := 100 .

MyObject.fill.color.blue := 0 .

…because Color is itself a Class Property, defining three simple properties - Red, Blue and
Green.

© DataEase International Ltd

5

Defining an OML Script
You define an OML Script using the DQL/Event Editor - this being the normal DQL Editor, which
has now been extended to include Event Scripting Pick Lists. These consist of Events, Objects,
Classes, Properties and Methods. (If you're writing a procedure, you may want to shrink the
Event Scripting Pick Lists, to leave more room for your query script).

Four of the new Pick Lists are shown below. The missing Pick List (Events) is at the top of the
Script Editor screen. (It's shown on the next page).

The script editor is accessed by right-clicking on an object, and selecting "script" from the pop-
up Express Menu. Once in the Script Editor, you can define scripts for as many objects as you
like.

Each object can have several OML Scripts….in fact one for each Event that the object is
capable of handling. Different Objects respond to different Events.

An Action Button object contains no data, and so it has no Events dependant on a change in
data value, such as "ValueChange". An Edit Box has a large number of possible events,
because there are a large number of ways in which the user can interact with it.

So, writing a very simple OML Script would involve just three steps:

1 In the Script Editor select (from the Object Pick List) a form object - say, a button.

2 Select (from the Event Pick List) an Event which will trigger your script - say "clicked".

3 Select the action which will take place when the Event is triggered - say, hide the button. This
actually requires two lines of code. The first line sets the object's "visible" property to "0" -
which means invisible. The second line sets the "Redraw" property to "1" - which forces the
object to be immediately redrawn. This is necessary, because the "visible" property simply
defines how the object will behave when it is next drawn - it doesn't cause the object to be
redrawn.

© DataEase International Ltd

6

The two lines of code are shown below:

MyButton.visible := 0 .

MyButton.Redraw := 1 .

…so the complete OML script would look like the screenshot shown below.

Syntax: Look at the first line and note the syntax. First we have the object name "MyButton"
followed by the word "visible" ("Visible" is a Button Property). These two words are separated by
a ".". Dot notation is used throughout the OML Script Editor. To set the property value we use
the ":=" symbol, followed by the new value itself. Finally, the instruction is terminated by a "dot".
(Note that there must be a space between the value and the closing dot).

You may have noticed that the Object List is displayed twice - once at the top of the screen, and
once in a Pick List at the bottom of the screen. The 'top' Object List is positioned opposite the
Event Pick List. You highlight an Object from the Object List, and then select the Event which
will trigger your script. So you can think of these as Object>>Event pairs. You then write your
script for the Object>>Event pair in the usual script area.

The 'bottom' Object Pick List is an aide-mémoire, showing you which objects are available for
modification in your script.

Every Object can have a separate Event Script for each Event that applies to it…so you can
write an awful lot of Event Scripts for each document.

Using the Pick Lists
• Click on an Object in the Object Pick List and the object's Events, Properties, and Methods

will appear in the relevant Pick Lists. But be aware that the Event Pick List may
sometimes contain Events which are inherited from higher Classes, and are not usable by
the current object.

• Double-click on any item in the Pick List and the item will be pasted into the Script Editor at
the current cursor position.

• DataEase contains both Simple and Class Properties. When you wish to define a Simple
Property, you select it from the Property Pick List. When you wish to define a Class
Property, you select it from the Class Pick List, whereupon the Class's Simple Properties
will be displayed in the Properties Pick List.
See the Properties Introduction for a full explanation of Simple and Class Properties.

© DataEase International Ltd

7

Variables in Scripts
Local Variables
In DQL, you would manipulate variables by defining and assigning them as either Temporary
(operates within the procedure only) or Global (operates outside the procedure) Variables, as
shown in the examples below:

Define Temp "MyLocalCounter" number .

Define Global "GeneralCounter" number .

In OML Scripting, you assign a local variable using the syntax:
Define "MyLocalCounter" number .

…note that they keyword "temp" is not used. You can shorten your definition further, by using
the syntax:

number MylocalCounter .

..instead of:
Define "MyLocalCounter" number .

..both examples work, but the longer method probably makes it easier for a maintenance
programmer to recognise at a glance.

Global Variables
DataEase Global variables are not supported within OML Scripts, however you can create
globally active variables by using CDF's, such as SetArray and GetArray. These CDF's ship
with DataEase 6.x.
GetArray and SetArray are very easy to use. To use them, you must first register their CDF
Library - CDFS2 - with DataEase. Once the library is loaded, you can use GetArray and
SetArray whenever you want. They are briefly described below.
The SetArray funtion establishes a small ten element array in memory. The elements are
numbered from 1 to 10, and each element holds a character string of up to 255 characters in
length. You place values into the array with a command such as;

 SetArray (1, "520") .

 SetArray (4, "Somettext") .

Having created these values, you access them by using the GetArray CDF. The syntax for
Getarray is;

MyField := GetArray(4).

MyNumberField := GetArray(1)

…which would retrieve the text value "SomeText" and place it into the field called MyField, and
place the number "520" in the number field called MyNumberField.

Note that there are other CDFs available which define larger arrays.

© DataEase International Ltd

8

DQL in OML Scripts
Before you start writing OML Scripts, you must fully understand the difference between the
MultiView and the Data Model. We defined them earlier, but will repeat the definition now.

• The term Data Model is applied to the physical structure of the document(s) you are currently
working with - the Tables and their Relationships. (Open the QBM Dialogue to see your
current Data Model).

• The term MultiView describes a run-time snapshot of the actual data held in your current
Data Model.

When writing an OMLt Script, you CAN modify the MultiView, but can NOT modify the Data
Model. In other words you are allowed to enter, modify and delete data. But you are not allowed
to modify the structure of that data - so you can't create new tables, or ad-hoc relationships, or
permanent relationships between tables.

In addition to the OML Script commands themselves, a large subset of DQL commands and
structures can be used within an OML Script. The following tables describe which statements
and structures CAN and can NOT be used.

DQL can be broken down into the following categories:

Processing Commands

Sorting and Grouping Operators

Control Commands

Procedural Commands

Functions

Symbols and comparison operators

Relational Statistical Operators
…each of which is described in the following pages.

© DataEase International Ltd

9

Processing Commands
Most Processing commands can be used inside an OML Script, but the "For" statement can
NOT be used, so it is NOT possible to use structures such as;

For FORM (with some criteria)
list records
modify records
enter a record
delete records

…however you CAN use processing commands without the 'For' command, as in;

modify a record in

enter a record in

delete records in

The full Processing Commands rules are:
For can NOT be used
List Records can NOT be used
Input Using can NOT be used
Export can NOT be used
Lock OK
Unlock OK
Query Selection OK
Modify records OK - outside a For loop.
Enter a Record OK - outside a For loop.
Delete a Record OK - outside a For loop.

Sorting and Grouping Operators
Sorting and Grouping Operators are not allowed inside an OML Script.

In order can NOT be used
In groups can NOT be used
In reverse can NOT be used
In groups with group totals can NOT be used

© DataEase International Ltd

10

Control Commands
Control Commands are all listed below. They can all be used from within an OML Script.

Run Procedure OK
Call Menu OK
Call Program OK
Record Entry OK
Import OK
Reorganize OK
Db Status OK
Backup DB OK
Restore DB OK
Lock DB OK
Unlock DB OK
Install Application OK
Application Status OK
Lock OK

Procedural Commands
Most (but not all) Procedural Commands can be used in an OML Script.

Output Can NOT be used.
Message OK
If OK
Else OK
End OK
While OK
Break OK
Exit OK
Case OK
Value OK
Others OK
Define OK, but only with a local OML Script Variable - not Temp or Global.
Assign OK, but only with a local OML Script Variable - not Temp or Global

Note: Although Temporary and Global variables can not be used in an OML Script, OML Scripts
have their own 'local' variables, which are essentially identical to Temporary variables. Global
variables can be created by using the CDF's getarray, setarray and memarray32.

See the section "Variables in Scripts " for a full explanation.

© DataEase International Ltd

11

DQL Functions
All 58 DQL Functions CAN be used. The list (by category) is;

Text all OK
Date all OK
Time all OK
Spell all OK
Text all OK
If is OK
Math all OK
Financial all OK
Scientific all OK
Trigonometric all OK

DQL symbols and comparison operators
All DQL symbols and comparison operators CAN be used. These consist of;

 (addition) OK
- (subtraction) OK
/ (division) OK
* (multiplication) OK
* (asterisk) OK
? (question mark) OK
~ (tilde) OK
: (colon) OK
() (parentheses) OK
. (period) OK
;_ (semicolon) OK
"" (quotation marks) OK
:= (assignment operator) OK
< (less than) OK
= (equals) OK
> (greater than) OK
>= (greater than or equal to) OK
-- (comment) OK

© DataEase International Ltd

12

Relational Statistical Operators
All Relational Statistical Operators CAN be used in a Script. Note that you must use an existing
relationship to retrieve summary data - you can NOT define an ad-hoc relationship in your
Script.

Count of OK
Highest of OK
Sum of OK
Mean of OK
Lowest of OK

Conditional Logic
You can apply conditional logic to your OML Scripts by using normal DQL commands. The
example below contains a Rectangle object and a Button object. When the Button>>Clicked
Event takes place, the script is run. An if…then…else construction toggles the Rectangle's
Red colour on and off.

if Rectangle.Fill.Color.Red = 0 then

Rectangle.Fill.Color.Red := 255 .

rectangle.redraw := 1 .

else

Rectangle.Fill.Color.Red := 0 .

rectangle.redraw := 1 .

end .

© DataEase International Ltd

13

Displaying Changes
When you change the visual characteristics of an object on screen, there are three different
ways in which you can cause the object to be re-displayed.

The Draw() method ..MyObject.Draw() .
The Show() method ..MyObject.Show() .
The ReDraw property ..MyObject.redraw := 1 .

Each has a slightly different way of redrawing the object.

The Draw() Method draws the object over the top of the old object, and over the top of all other
objects that might be stacked beneath or above it - so if the object was previously concealed
by another object, then it is no longer concealed.
The Show() Method draws the object over the top of the old object, but maintains the object's
position in a stack of objects - so if the object was previously concealed by another object, then
it remains concealed.
The ReDraw Property deletes the old object, and then draws it again, but maintains the
object's position in a stack of objects - so if the object was previously concealed by another
object, then it remains concealed.

The difference between ReDraw and Show() is that ReDraw deletes the old object before
redrawing it.
For example: Imagine you have a Rectangle Object, and you write an OML Script which
reduces the object's size.
If you redisplay it by using the Show() Method - nothing will appear to happen. The object's
new size is not apparent, because the old 'large' version is still displayed on screen.
If you set the ReDraw := 1 property instead, then the object's new size will be immediately
visible.

These three options allow you to pick the specific 'type' of screen repainting which suits your
current requirement.

© DataEase International Ltd

14

Lost Scripts
There are two ways in which your OML Scripts can be 'lost'.
• If you write OML Scripts on a Form - call it MyForm - and then make MyForm a subform of

another form. The subform version of MyForm does not retain the original MyForm OML
Scripts. However, MyForm itself does still possess the OML Scripts. This allows you to
create new scripts for every occurrence off MyForm as a subform in other forms.

• If you create a form over an existing form, then any scripts belonging to the original will be
duplicated in the copy. Unless you alter the layout of the 'copied' form before saving it. So
if you open a form, move things around, then save it as a new form - expect your OML
Scripts to be lost.

Error Messages
There are three Error Messages specific to OML Scripts. These error messages may appear if
different OML Scripts conflict with each other at Runtime.
For example, you might write a Script which deleted an object. This script would compile
correctly and would work correctly.
You might write a script which changed the colour of an object. This script would compile
correctly and work correctly…..unless the Event which triggered it came after the event which
deleted it.
The following three error messages deal with such conflicts.

• Runtime Error. Attempt to use uninitialised variable xxxxxx
This occurs when a variable returns NULL unexpectedly - testing for next object when you are
the last object on the screen would be an example. Normally the name of the variable will be
supplied at xxxxx.

• Runtime Error. Attempt to use unavailable function xxxxx
This appears whenever an attempt is made to call a function of any type for which the address
cannot be found. Calling a function in an object that has been deleted at runtime would be an
example. If available, the function name will be listed at xxxxx. Often, however, in those
circumstances the name of the function is garbled, so the error message shown below may be
substituted.

• Runtime Error. Attempt to access object with unknown class.
Again, most likely to occur if an object has been deleted at runtime and an attempt is made to
call its functions or set its properties. This error message is
Is less informative, but avoids printing garbage characters instead of function names.

© DataEase International Ltd

15

Introduction to Events
Events are the means by which the object sends information back to DataEase - specifically,
the news that something has happened which might require attention. (More properly the
object reports the news to Windows, which then reports to DataEase).
Not all Events are available to all Objects. For example, a "Line" Object is just a piece of
window-dressing, used to improve the visual appearance of your document. It contains no
value, and hence Events such as "PreEdit" and "ValueChange" are irrelevant to it, since it has
no value to edit or change.
Since an understanding of Events is fundamental to writing OML Scripts, a lengthier
description of Events is given below.

What are Events?
Pete Tabord, Sapphire's Head of Development, defines them from a DataEase perspective

“It is inherent in the Windows architecture that, unlike DOS, the machine essentially sits dormant
until an event occurs. One does not run a program so much as register a program with Windows
that will be handed control from Windows when certain things occur. So, in contrast to DOS, a
programmer does not own the machine even when his program is ‘running’. He merely supplies
code that will be accessed when certain external events occur.

The mechanism for this is the message. One creates message handlers that are fired up in
response to Windows generating a message that an event has occurred. DataEase is not a
monolithic program. It is composed of a database engine, a user interface, and a large number
of objects, some internal (e.g. forms and reports) and some external DataEase object libraries,
such as button, line, etc.

Many messages are handled by DataEase objects. Not all objects handle all events. DataEase
6 supplies the ability, in certain circumstances, for the application developer to add his own
event handler in screen objects. You can only attach an OML Script to an event if the object in
question has a handler for that event”.

The Event Return
Some Events - such as PostEdit, KeyInput and ValueChange - can effectively be run through a
loop, by writing code which either accepts or rejects the Event. You do this by setting the
Event Return value.
Example: Using the Reservations form in Club ParaDease, we write a script in the KeyInput
Event on the Rooms Required field, which will provide us with a conditional Prevent data-
entry. The script below will reject any user input which begins with "P".

if CLUB NAME.Value="P*"
then
message "You cannot enter data here" window .
return(2). /* Fail - do not allow input */
else
return(1). /* Success - allow input

Note: DataEase is unusual in that the event return() does not hold a Boolean value, and
moreover treats the values "0" and "1" as both meaning True. Any result other than 0 or 1
means False. So if you are testing for a False condition, write return(2). DataEase will
recognise the 2 as being a False value.
..so the above piece of code would continually loop through the field's data-entry phase, until
the condition was met.

© DataEase International Ltd

16

Event Strings
Several events return a new value in the object's string property. String is a text property. If
you wish to carry out mathematical operations or comparisons on string, then you need to
work through a temporary variable.
Example: The code below is placed in a number field's PostEdit Event.

Define "MyVariable" number .

MyVariable := string .

if

MyOtherObject.value = "Discount"

then

MyVariable := MyVariable * 0.35 .

string := MyVariable .

redraw := 1 .

else

end .

...which conditionally (if MyOtherObject = discount) reduces the field's numerical content to
35% of its previous value.

© DataEase International Ltd

17

List of Events
All the Events supported by DataEase 6 are listed and described below.

 Event Name Parameters Description
Clicked (Number ButtonID,

Number xLoc,
Number yLoc)

Fired when you perform a mouse click in
the object.
ButtonID: This indicates which button was
pressed. 0 is left; 1 is right.
The xLoc and yloc parameters (described
below) are not available to the developer.
xLoc the X co-ordinate in pixels of the
mouse pointer when the event occurred.
yLoc the Y co-ordinate in pixels of the
mouse pointer when the event occurred.
(0 , 0) is the top left-hand corner of the
form.

DblClicked (Number ButtonID,
Number xLoc,
Number yLoc)

Fires when you double-click your mouse in
an object.
ButtonID: This indicates which button was
pressed. 0 is left; 1 is right.
The xLoc and Yloc parameters (described
below) are not available to the developer.
xLoc the X co-ordinate in pixels of the
mouse pointer when the event occurred.
yLoc the Y co-ordinate in pixels of the
mouse pointer when the event occurred.
(0 , 0) is the top left-hand corner of the
form.

DownArrowClicked () This Event occurs if the Down Arrow in a
SpinBox or 3DSpinBox is clicked.

GotFocus () Fires when a field is entered.
Note: If you put this event on the object
which receives focus when a form is
opened, it will NOT be triggered when the
form opens. Technically the object already
HAS focus, before the GotFocus Event can
be evaluated.

PreEdit () Although PreEdit appears in the DataEase
6.0 Event Pick List, it is only available as a
Method.
This event/method occurs immediately
after a field gets the focus and before a
user enters data in it.
The PreEdit event/method gets the field
ready to be edited. For example, it allows
the cursor to appear in the field, and
highlights the text of existing values.

© DataEase International Ltd

18

PostEdit (Text String) Fires after the field has been edited,
whereupon the String parameter contains
the new value. The object's value property
still contains the old value.
Note: PostEdit fires before the
ValueChange Event. This means that it
fires before the object's derivation formula
(if any) is evaluated. So if the user types in
"10", and the derivation formula multiplies
the input value by 5, then String will hold
"10", and not "50".
So to modify the object's value, modify the
string parameter. Use Event Return to
either accept or reject the string value.

ValueLoaded () Triggered when a change is made to the
field's value. This can result from a user
editing the field, or from the action of a
script or derivation, or simply pressing the
F3 key.
Note that the ValueLoaded Event fires
twice for every record.

ValueChange (Text String) Fired when field loses focus and the field's
value differs from the stored (originally
loaded from the Table) value.
The String parameter holds the new value,
after all derivations and lookups have been
performed.
You can not modify a field's value property
using this event - because it occurs after
the field's derivations have been carried
out.
However you can check value, and either
accept or reject it, by using the Event
Return Flag.

ValueRequired () Can not be customised.
LostFocus () Fires when you exit from an object which

previously held focus.
MouseDown (Number ButtonID,

Number xLoc,
Number yLoc)

Fires when mouse button pressed.
ButtonID: This indicates which button was
pressed. 0 is left; 1 is right.
The xLoc and Yloc parameters (described
below) are not available to the developer.
xLoc the X co-ordinate in pixels of the
mouse pointer when the event occurred.
yLoc the Y co-ordinate in pixels of the
mouse pointer when the event occurred.
(0 , 0) is the top left-hand corner of the
form.

© DataEase International Ltd

19

MouseUp (Number ButtonID,
Number xLoc,
Number yLoc)

Fires when mouse button released.
ButtonID: This indicates which button was
pressed. 0 is left; 1 is right.
The xLoc and Yloc parameters (described
below) are not available to the developer.
xLoc: The X co-ordinate in pixels of the
mouse pointer when the event occurred.
yLoc: The Y co-ordinate in pixels of the
mouse pointer when the event occurred.
(0 , 0) is the top left-hand corner of the
form.

MouseMove (Number xLoc,
Number yLoc)

Fires when mouse moved in a visible
object.
The xLoc and Yloc parameters (described
below) are not available to the developer.
xLoc: The X co-ordinate in pixels of the
mouse pointer when the event occurred.
yLoc: The Y co-ordinate in pixels of the
mouse pointer when the event occurred.
(0 , 0) is the top left-hand corner of the
form.

MouseOver () Fires when mouse passes over a visible
object.

MouseEnter () Fires when mouse enters a visible object.
MouseExit () Fires when mouse exits a visible object.
KeyDown (Number KeyValue) Fires when an object has the focus and a

keyboard key is pushed down.
KeyValue: The ANSI number of the key
pressed. (Introduced in 6.5).

KeyInput (Number KeyValue) Fires when a user presses a key that inputs
a value while an object has the focus.
KeyValue: The ANSI number of the key
pressed. (Introduced in 6.5).

KeyUp (Number KeyValue) Fires when a user releases a key while an
object has the focus.
KeyValue: The ANSI number of the key
pressed. (Introduced in 6.5).

UpArrowClicked () This Event occurs if the Up Arrow in a
SpinBox or 3DSpinBox is clicked.

© DataEase International Ltd

20

Keyboard Events
Usually the order of events is: KeyDown, KeyInput and KeyUp. However, there are certain
keys for which there is no KeyInput event, and there are even a few keys that only trigger the
KeyUp event.
Each event has an associated KeyValue event parameter, which is the ANSI number of the
key concerned. The KeyValue for KeyDown and KeyUp is not modified by pressing other keys
at the same time; the KeyInput KeyValue is modified by other keys. Principally, this means
that, if the user holds down the Shift key and then presses 7 (ANSI 55), the KeyValue for both
KeyDown and KeyUp will be 55, whereas KeyInput’s KeyValue will be 38, which is the ‘&’
character that appears above the ‘7’ on that key.
For alphabetical characters, pressing ‘A’ for KeyDown and KeyUp gets a value of 65, which is
the upper case ANSI value, where KeyInput has 97, the lower case value for ‘a’.
All the following characters trigger KeyDown/KeyUp events only. Their KeyValue value is given
in brackets:
Caps lock (20); Shift (16); Ctrl (17); Ctrl+Alt (18) (Alt on its own has no value); Windows button
on left-hand side of keyboard (91); Windows button on right-hand side (92); Context button
(93); ScollLock (145); Pause (19); Insert (45); Home (36); Page up (33); Delete (but not
backspace) (46); End (35); Page Down (34); Up Cursor (38); Down Cursor (40); Left Cursor
(37); Right Cursor (39); NumLock (144).
The behaviour of the function keys requires even more care. Generally, they are
KeyDown/KeyUp events only, and have values from 112 for F1 to 123 for F12. If the function
key has an action that is not for some reason disabled, or has no associated action, the
KeyDown and KeyUp events will fire. But if, for example, F2-Save is disabled because the
usage of the form is prevent data-entry, then only a KeyUp event occurs.
F10 triggers no events. Alt also usually has no value returned. Print Screen only fires a KeyUp
event (with a KeyValue of 44).

© DataEase International Ltd

21

Introduction to Methods
A Method is a function which is internal to an object. This function can be called externally.
Methods typically perform some sort of process relevant to the object, such as "refresh the
object’s screen display".
It is common practice to give a method fired by an event the same name as the triggering
event. Hence an Event/Method consists of both an Event and a Method which, because of
their relationship, share the same name.

List of Methods
Method Name Parameters Description
Delete Deletes an object from the form. Should be used with

caution! Events and derivation formula which refer to a
deleted object will trigger error messages.

Draw () Draws an Object as the front-most object. (see Show).

DoAction Can not be customised.
EditProperty Can not be customised.
Erase () Erases an Object.
ExecuteVerbList Can not be customised.
GetObject Can not be customised.
GetVerbList Can not be customised.
Hide () Hides an object. Removes an object from the display,

setting its visible property to false (0)
Highlight () Removes the 'Highlight' border which normally surrounds

an Object which has focus.
Insert Can not be customised.
Invert Can not be customised.
MouseCapture () Captures the mouse.
MouseRelease () Releases the mouse.
Move (Number x,

Number y)
Can not be customised.
Moves an object relative to its current origin.
X The distance in pixels to move horizontally.
Y The distance in pixels to move vertically.
Use positive numbers to move right and down, use
negative numbers to move left and up.
The object will be redrawn in front of any objects it
overlaps, so you do not need to add a "show" instruction.

MoveTo (Number xLoc,
Number yLoc)

Can not be customised.
Moves an object to an absolute location.
X The pixel position on screen to move horizontally to.
Y The pixel position on screen to move vertically to.

© DataEase International Ltd

22

This moves an object directly to a position on the current
form. Negative numbers will move the control partly or
completely off screen.
The object will be redrawn in front of any objects it
overlaps. Any objects the moved object overlaps will also
be redrawn.

Replace Can not be customised.
Select () Not implemented in 6.0. When implemented, Select will

select an object - essentially gives focus to that object.
Show () Shows an object. Show retains an object’s position in a

stack of overlapping objects, while draw redraws the
object as the front-most object.
See Displaying changes for a lengthier description of
the differences between Show and Draw.

© DataEase International Ltd

23

Introduction to Properties
A property is a variable characteristic - for example the Font Size, or Colour - of an object that
can be accessed by the DataEase developer – typically something which changes the behavior
or appearance of the object.

In DataEase there are two basic types of property - the Simple Property, and the Class Property.
(There is actually a third category - System Classes - consisting of Application, Document,
SuperString and VObject - but this class is not available to the DataEase application developer).

A Simple property defines a single characteristic. For example, the Visible property defines
when an object is visible (MyObject.Visible := 1) or invisible (MyObject.Visible := 0).

A Class Property does not directly define properties. Instead it uses either Simple Properties or
other Class Properties to define properties.

For example, the Class Property Fill uses the Simple Properties Hatch and Style. But it also
uses the Class Property Color. If you wanted to use Fill to change the Style of an object, the
syntax would be:

MyObject.fill.style := 3 .

But if you wanted to use Fill to change the colour of an object, the syntax would be:

MyObject.fill.color.red := 128 .

MyObject.fill.color.green := 100 .

MyObject.fill.color.blue := 0 .

…Because Color is itself a Class Property, defining three simple properties - Red, Blue and
Green.

Object Properties can be modified in one of two ways:

a) Via the object's various design-time Dialog Boxes used to create or modify aspects of the
object's Definition, Display, Font, Action, and Layout.

b) Via OML Scripts, which can change all the values mentioned above, but ONLY while the
object's owning form is open. If the form is closed and then re-opened, the object will return to
its original defined properties.

This section of the Guide describes Simple Properties. Class Properties are described in the
following section.

© DataEase International Ltd

24

Property List
The table below summarizes the properties available in DataEase. The majority of these
properties are Boolean, and hold a single Bit of information - a "0" or a "1", with "1" meaning True
and "0" meaning False. A few of the properties hold Number or Text values.

Some properties shown in the table are Class Properties, meaning that they hold no values of
their own. Instead they will define several Simple Properties - which do hold values. Class
Properties are identified by having (C) after their name.

Properties can be either Read Only or Read/Write. As you will have guessed, you can not
change the value of a Read Only property.

Properties Read Only or
Read/Write

Format Description

Action Read Only 0 or 1 Can not be customised..
Border (C) Read/Write - See the Border Class Property.
Backpoint Read/Write This is a property of the 3DLine Object.

If True (1) places an Arrow at the back
of the line. (This is only really visible if
you thicken the line). If False (0) no
arrow is placed at the back of the line.

CanTab Read Only 0 or 1 An object which can be tabbed (e.g. is
capable of gaining focus), is True (1).
An object which cannot be tabbed -
such as an ellipse - is False (0).

Child (C) Read Only - Most objects have a Parent - the
Record Object. The Child property is
true (1) for the first child of a record,
and false (0) for subsequent children.
Other children can be found by
accessing the Next and Prev
properties of the child. For example, a
Record may contain a number of fields
and other objects.. To work through the
objects displayed within the record,
start with the (first) child of the record.
For each child, locate the Next control
until no more controls are found.

ClassName Read Only Text Returns the Class Name of the object -
SpinBox, Rectangle, Ellipse, etc.

Delay Read/Write Number Sets the spin rate in a spin box.
Measured in 100's of a second.

DataConnected Read Only 0 or 1 This is True (1) if the object can contain
data - such as an Edit Box - and False
(0) if the object contains no data - such
as an Ellipse.

DipShade (C) Read/Write - See the Dipshade Class Property

© DataEase International Ltd

25

DipShine (C) Read/Write - See the Dipshine Class Property
Enable Read/Write 0 or 1 Turns OML Scripting for an object on

and off, with True (1) meaning that
OML Scripts on the object will be run,
and False (0) meaning that OML
Scripts will be disabled.

Fill (C) Read/Write - See the Fill Class Property.
Font (C) Read/Write - See the Font Class Property.
FrontPoint Read/Write 0 or 1 This is a property of the 3DLine Object.

If True (1) places an Arrow at the front
of the line. (This is only really visible if
you thicken the line). If False (0) no
arrow is placed at the front of the line.

HasValue Read Only 0 or 1 If True (1), the object is capable of
storing a Value, and if False (0) the
object is not capable of storing a value.
Similar to data-connected property.

HighShade (C) Read/Write - See the HighShade 3D Class Property
HighShine (C) Read/Write - See the HighShine 3D Class Property.
IsCompound Read Only 0 or 1 Reads True (1) if the object has a child,

and False (0) if the object has no
children. So a Form with a Subform
would read True.

IsForm Read Only 0 or 1 True (1) means the object is a form,
False (0) means it isn't.

IsLabel Read Only 0 or 1 True (1) means the object is a label,
False (0) means it isn't.

IsLiveReport Read Only 0 or 1 True (1) means the object is a live
report, False (0) means it isn't.

IsPrinting Read Only 0 or 1 True (1) means the object is printing,
False (0) means it isn't.

IsReport Read Only 0 or 1 True (1) means the object is a report,
False (0) means it isn't.

IsRecord Read Only 0 or 1 True (1) means the object is a record,
False (0) means it isn't.

IsSelected Read Only 0 or 1 When True (1), this object has the
focus.

IsTableView Read Only 0 or 1 Returns True (1) if the document is in
Table View, and False (0) if it is in
Form View.

Justify Read/Write 0 or 1 Used in the Label and 3D Label
objects. True (1) justifies text, and
False (0) leaves it unjustified.

LowShade (C) Read/Write - See the 3D Class Property LowShade
LowShine (C) Read/Write - See the 3D Class Property LowShine
Name Read Only Text Contains the name of the object. (Read

Only, to avoid chaos!).
Next (C) Read Only 0 or 1 See the Next Class Property

© DataEase International Ltd

26

Parent (C) Read Only - See the Parent Class Property
Prev (C) Read Only 0 or 1 See the Prev Class property
PropertyList Read Only Text Not implemented.
Rect (C) Read/Write - See the Rect Class Property
RectBorder (C) Read/Write - See the RectBorder Class object.
RectFill (C) Read/Write - See the RectFill Class Object
ReDraw Read/Write 0 or 1 If True (1) forces the object to be

deleted and then redrawn on screen.
RimShade (C) Read/Write - See the 3D Class Property RimShade.
RimShine (C) Read/Write - See the 3D Class Property RimShine
RoundedCorners Read/Write 0 or 1 When True (1) the corners of a

rectangle are rounded, and when False
(0) they are squared off.

Shadow (C) Read/Write - See the Shadow 3D Class Property
Shade (C) Read/Write - Can not be customised..
Shine (C) Read/Write - Can not be customised..
ScrollBorder Read/Write - See the ScrollBorder Class Property.
ScrollFill Read/Write - See the ScrollFill Class property.
Taborder Read Only Number Holds the Tab Order position of this

object. Returns -1 if no tab position has
been set.

TextString Read/Write Text The actual text within a Text Label
TextMargin Read/Write Number Sets the text margin in a 3D field.
TextSlantinDegrees Read/Write Number The angle of slant in a 3D Text object.
TextShade (C) Read/Write - See the TextShade 3D Class Property
TextShine (C) Read/Write - See the TextShine 3D Class Property
Thickness Read/Write Number Defines the thickness (in pixels) of a 3D

Line Object.
Type Read Only Number Returns the Class Number of an object.

(Each Class Object has a Number as
well as a name).

Value Read/Write Text Contains the Value held in the object.
Only data-connected objects have a
Value.

View Read/Write Can not be customised..
Visible Read/Write 0 or 1 When Visible is True (1) The object can

be seen. When False (0) the object is
hidden.

Wrap Read/Write 0 or 1 If True (1), wraps the text in a Label or
3DLabel object. If False (0), does not
wrap the text.

© DataEase International Ltd

27

Introduction to Objects
An object is something you place on a DataEase document - a field, a box, a picture, a
summary variable, and so on.
Every object responds to certain types of Events - the actual list of Events varies from one
object to another. Similarly, each object possesses Methods and Properties which can be used
with it.
All the objects used in DataEase are listed below. Click on any object to see a description of its
Events, Methods and Properties.
Some, but not all, objects are available in both "normal" and "3D" versions. They behave
identically, but the 3D versions have additional display characteristics.
Objects have many associated properties - size, colour, position, content, and so on. These
properties are initially specified at design time, but most properties can subsequently be
changed by an OML Script.

List of Objects
All the objects used in DataEase are listed below. Click on any object to see a description of its
Events, Methods and Properties.

3DcheckBox Checkbox Application Variable
3DeditBox EditBox OLE
3Dline Ellipse RadioBox
3DlistBox Image 3DradioBox
ImageField Rectangle Spin
3Dspin Label 3Dlabel
Line Button ListBox

© DataEase International Ltd

28

3DcheckBox (3DRadioButton)
A 3DCheckBox displays choices in a single box that toggles between Yes (selected) and No
(deselected). The field contains a blank value (default) until you click on the check box. When
you create a CheckBox field, DataEase displays the field name as the caption to the right of
the check box.
The 3D CheckBox behaves in exactly the same way as a CheckBox, except that it contains
enhanced Display properties to make it more attractive or eye catching.
Events: Clicked DblClicked GotFocus
 LostFocus MouseDown MouseUp

MouseMove MouseOver MouseEnter
MouseExit KeyDown KeyInput
KeyUp ValueLoaded ValueChange
ValueRequired

Methods: Delete DoAction Draw
Erase EditProperty GetObject
Hide Highlight Insert
Invert MouseCapture Move
MoveTo MouseRelease Replace
Select Show

Properties: Action (C)Border CanTab
Child ClassName DataConnected
(C)DipShade (C)DipShine Enable
(C)Fill (C)Font HasValue
(C)HighShade (C)HighShine IsCompound
IsForm IsLabel IsReport
IsPrinting IsRecord IsSelected
IsTableView (C)LowShade (C)LowShine
Name Next Parent
Prev PropertyList (C)Rect
ReDraw (C)RimShade (C)RimShine
RoundedCorners (C)Shadow Taborder
TextString TextMargin TextSlantinDegrees
(C)TextShade (C)TextShine Type
Value View Visible

© DataEase International Ltd

29

3DeditBox
A 3D EditBox displays alphanumeric values in a rectangular field. It is identical to an Editbox,
except that it contains enhanced Display properties to make it more attractive or eye catching.
Events: Clicked DblClicked GotFocus

LostFocus MouseDown MouseUp
MouseMove MouseOver MouseEnter
MouseExit PostEdit PreEdit
KeyDown KeyInput KeyUp
ValueLoaded ValueChange ValueRequired

Methods: Delete DoAction Draw
Erase EditProperty GetObject
Hide Highlight Insert
Invert MouseCapture Move
MoveTo MouseRelease Replace
Select Show

Properties: Action (C)Border CanTab
Child ClassName DataConnected
(C)DipShade (C)DipShine Enable
(C)Fill (C)Font HasValue
(C)HighShade (C)HighShine IsCompound
IsForm IsLabel IsReport
IsPrinting IsRecord IsSelected
IsTableView (C)LowShade (C)LowShine
Name Next Parent
Prev PropertyList (C)Rect
ReDraw (C)RimShade (C)RimShine
RoundedCorners (C)Shadow Taborder
TextString TextMargin TextSlantinDegrees
(C)TextShade (C)TextShine Type
Value View Visible

© DataEase International Ltd

30

3Dlabel
A 3DLabel - also known as a Text object - is used for placing Text on a document. The text is
attached to the Document, not to individual records in the document, and is used for Headings,
descriptive field labels, and so on. A 3Dlabel is identical to a Label, except that it contains
enhanced Display properties to make it more attractive or eye catching.
Events: MouseDown MouseUp MouseMove

MouseOver MouseEnter MouseExit
KeyDown KeyInput KeyUp

Methods: Delete DoAction Draw
Erase EditProperty GetObject
Hide Highlight Insert
Invert MouseCapture Move
MoveTo MouseRelease Replace
Select Show

Properties: Action (C)Border CanTab
Child ClassName DataConnected
(C)DipShade (C)DipShine Enable
(C)Fill (C)Font HasValue
(C)HighShade (C)HighShine IsCompound
IsForm IsLabel IsReport
IsPrinting IsRecord IsSelected
IsTableView (C)LowShade (C)LowShine
Justify Name Next
Parent Prev PropertyList
(C)Rect ReDraw (C)RimShade
(C)RimShine RoundedCorners (C)Shadow
Taborder TextString TextMargin
TextSlantinDegrees (C)TextShade (C)TextShine
Type Value View
Visible Wrap

© DataEase International Ltd

31

3Dline
A 3Dline object is a simple graphical shape - in this case a line - placed on a document. A
3DLine is identical to a Line, except that it contains enhanced Display properties to make it
more attractive or eye catching.
Events: MouseDown MouseUp MouseMove

MouseOver MouseEnter MouseExit
KeyDown KeyInput KeyUp

Methods: Delete DoAction Draw
Erase EditProperty GetObject
Hide Highlight Insert
Invert MouseCapture Move
MoveTo MouseRelease Replace
Select Show

Properties: Action (C)Border Backpoint
CanTab Child ClassName
DataConnected (C)DipShade (C)DipShine
Enable (C)Fill (C)Font
FrontPoint HasValue (C)HighShade
(C)HighShine IsCompound IsForm
IsLabel IsReport IsPrinting
IsRecord IsSelected IsTableView
(C)LowShade (C)LwShine Name
Next Parent Prev
PropertyList (C)Rect ReDraw
(C)RimShade (C)RimShine RoundedCorners
(C)Shade (C)Shine (C)Shadow
Taborder TextString TextMargin
TextSlantinDegrees (C)TextShade (C)TextShine
Thickness Type Value
View Visible

© DataEase International Ltd

32

3DlistBox
The ListBox displays choices in a drop-down list. The 3D ListBox is identical to ListBox, except
that it contains enhanced Display properties to make it more attractive or eye catching.
Events: Clicked DblClicked GotFocus

LostFocus MouseDown MouseUp
MouseMove MouseOver MouseEnter
MouseExit PostEdit KeyDown
KeyInput KeyUp ValueLoaded
ValueChange ValueRequired

Methods: Delete DoAction Draw
Erase EditProperty GetObject
Hide Highlight Insert
Invert MouseCapture Move
MoveTo MouseRelease Replace
Select Show

Properties: Action (C)Border CanTab
Child ClassName DataConnected
(C)DipShade (C)DipShine Enable
(C)Fill (C)Font HasValue
(C)HighShade (C)HighShine IsCompound
IsForm IsLabel IsReport
IsPrinting IsRecord IsSelected
IsTableView (C)LowShade (C)LowShine
Name Next Parent
Prev PropertyList (C)Rect
ReDraw (C)RimShade (C)RimShine
RoundedCorners (C)Shadow Taborder
TextString TextMargin TextSlantinDegrees
(C)TextShade (C)TextShine Type
Value View Visible

© DataEase International Ltd

33

3DradioBox
The RadioBox displays choices as radio buttons. The 3DradioBox is identical to RadioBox,
except that it contains enhanced Display properties to make it more attractive or eye catching.
Events: Clicked DblClicked GotFocus

LostFocus MouseDown MouseUp
MouseMove MouseOver MouseEnter
MouseExit KeyDown KeyInput

 KeyUp ValueLoaded ValueChange
ValueRequired

Methods: Delete DoAction Draw
Erase EditProperty GetObject
Hide Highlight Insert
Invert MouseCapture Move
MoveTo MouseRelease Replace
Select Show

Properties: Action (C)Border CanTab
Child ClassName DataConnected
(C)DipShade (C)DipShine Enable
(C)Fill (C)Font HasValue
(C)HighShade (C)HighShine IsCompound
IsForm IsLabel IsReport
IsPrinting IsRecord IsSelected
IsTableView (C)LowShade (C)LowShine
Name Next Parent
Prev PropertyList (C)Rect
ReDraw (C)RimShade (C)RimShine
RoundedCorners (C)Shadow Taborder
TextString TextMargin TextSlantinDegrees
(C)TextShade (C)TextShine Type
Value View Visible

© DataEase International Ltd

34

3Dspin
A 3DSpinBox displays numeric values. Type in a value or use the vertical arrow controls to
display a value. A 3D Spinbox is identical to a Spinbox, except that it contains enhanced
Display properties to make it more attractive or eye catching.
Events: Clicked DblClicked GotFocus

LostFocus MouseDown MouseUp
MouseMove MouseOver MouseEnter
MouseExit PostEdit PreEdit
KeyDown KeyInput KeyUp
ValueLoaded ValueChange ValueRequired

Methods: Delete DoAction Draw
Erase EditProperty GetObject
Hide Highlight Insert
Invert MouseCapture Move
MoveTo MouseRelease Replace
Select Show

Properties: Action CanTab Child
ClassName Delay DataConnected
(C)DipShade (C)DipShine Enable
(C)Fill (C)Font HasValue
(C)HighShade (C)HighShine IsCompound
IsForm IsLabel IsReport
IsPrinting IsRecord IsSelected
IsTableView (C)LowShade (C)LwShine
Name Next Parent
Prev PropertyList (C)Rect
RectBorder RectFill ReDraw
(C)RimShade (C)RimShine RoundedCorners
ScrollBorder ScrollFill (C)Shade
(C)Shine (C)Shadow Taborder
TextString TextMargin TextSlantinDegrees
(C)TextShade (C)TextShine Type
Value View Visible

© DataEase International Ltd

35

Application Variable
An Application Variable object displays system-generated information (e.g. current date,
current time, current page number), rather than displaying any data from the database itself.
Events: Clicked DblClicked GotFocus

LostFocus MouseDown MouseUp
MouseMove MouseOver MouseEnter
MouseExit KeyDown KeyInput
KeyUp

Methods: -

Properties: Name

© DataEase International Ltd

36

Button
A Button is a graphic object that performs an action (such as displaying or hiding the Toolbar)
when it is clicked in user View.
Events: Clicked DblClicked GotFocus

LostFocus MouseDown MouseUp
MouseMove MouseOver MouseEnter
MouseExit KeyDown KeyInput
KeyUp

Methods: Delete DoAction Draw
Erase EditProperty GetObject
Hide Highlight Insert
Invert MouseCapture Move
MoveTo MouseRelease Replace
Select Show

Properties: Action (C)Border CanTab
Child ClassName DataConnected
Enable (C)Fill (C)Font
HasValue IsCompound IsForm
IsLabel IsReport IsPrinting
IsRecord IsSelected IsTableView
Name Next Parent
Prev PropertyList (C)Rect
ReDraw RoundedCorners Taborder
TextString TextMargin TextSlantinDegrees
Type Value View
Visible

© DataEase International Ltd

37

Checkbox
A CheckBox displays choices in a single box that toggles between Yes (selected) and No
(deselected). The field contains a blank value (default) until you click on the check box. When
you create a CheckBox field, DataEase displays the field name as the caption to the right of
the check box.
Events: Clicked DblClicked GotFocus

LostFocus MouseDown MouseUp
MouseMove MouseOver MouseEnter
MouseExit KeyDown KeyInput
KeyUp

Methods: Delete DoAction Draw
Erase EditProperty GetObject
Hide Highlight Insert
Invert MouseCapture Move
MoveTo MouseRelease Replace
Select Show

Properties: Action CanTab Child
ClassName DataConnected Enable
HasValue IsCompound IsForm
IsLabel IsReport IsPrinting
IsRecord IsSelected IsTableView
Name Next Parent
Prev PropertyList (C)Rect
ReDraw Taborder Type
Value View Visible

© DataEase International Ltd

38

EditBox
An EditBox displays alphanumeric values in a rectangular field.
Events: Clicked DblClicked GotFocus

LostFocus MouseDown MouseUp
MouseMove MouseOver MouseEnter
MouseExit PostEdit PreEdit
KeyDown KeyInput KeyUp
ValueLoaded ValueChange ValueRequired

Methods: Delete DoAction Draw
Erase EditProperty GetObject
Hide Highlight Insert
Invert MouseCapture Move
MoveTo MouseRelease Replace
Select Show

Properties: Action Border CanTab
Child ClassName DataConnected
Enable (C)Fill (C)Font
HasValue IsCompound IsForm
IsLabel IsReport IsPrinting
IsRecord IsSelected IsTableView
Name Next Parent
Prev PropertyList (C)Rect
ReDraw Taborder Type
Value View Visible

© DataEase International Ltd

39

Ellipse
An Ellipse object is a simple graphical shape - in this case an ellipse - placed on a document.
Events: Clicked DblClicked GotFocus

LostFocus MouseDown MouseUp
MouseMove MouseOver MouseEnter
MouseExit KeyDown KeyInput
KeyUp

Methods: Delete DoAction Draw
Erase EditProperty GetObject
Hide Highlight Insert
Invert MouseCapture Move
MoveTo MouseRelease Replace
Select Show

Properties: Action CanTab Child
ClassName DataConnected Enable
HasValue IsCompound IsForm
IsLabel IsReport IsPrinting
IsRecord IsSelected IsTableView
Name Next Parent
Prev PropertyList (C)Rect
ReDraw Taborder Type
Value View Visible

© DataEase International Ltd

40

Image (Picture)
An Image field (or Picture field) is a background picture that appears the same on each record,
because it is attached to the Form, and not to individual Records within the form. Picture
Objects can have Actions assigned to them, so that they behave like Buttons.
Events: Clicked DblClicked GotFocus

LostFocus MouseDown MouseUp
MouseMove MouseOver MouseEnter
MouseExit KeyDown KeyInput
KeyUp ValueLoaded ValueChange
ValueRequired

Methods: Delete DoAction Draw
Erase EditProperty GetObject
Hide Highlight Insert
Invert MouseCapture Move
MoveTo MouseRelease Replace
Select Show

Properties: Action CanTab Child
ClassName DataConnected Enable
HasValue IsCompound IsForm
IsLabel IsReport IsPrinting
IsRecord IsSelected IsTableView
Name Next Parent
Prev PropertyList (C)Rect
ReDraw Taborder Type
Value View Visible

© DataEase International Ltd

41

ImageField
An Imagefield accepts an image filename and displays graphic data in User View. ImageFields
are tied to individual records in a form, and are used for Staff Records, Part Inventories, and so
on.
Events: Clicked DblClicked GotFocus

LostFocus MouseDown MouseUp
MouseMove MouseOver MouseEnter
MouseExit KeyDown KeyInput
KeyUp ValueLoaded ValueChange
ValueRequired

Methods: Delete DoAction Draw
Erase EditProperty GetObject
Hide Highlight Insert
Invert MouseCapture Move
MoveTo MouseRelease Replace
Select Show

Properties: Action CanTab Child
ClassName DataConnected Enable
HasValue IsCompound IsForm
IsLabel IsReport IsPrinting
IsRecord IsSelected IsTableView
Name Next Parent
Prev PropertyList (C)Rect
ReDraw Taborder Type
Value View Visible

© DataEase International Ltd

42

Label
A Label - also known as a Text object - is used for placing Text on a document. The text is
attached to the Document, not to individual records in the document, and is used for Headings,
descriptive field labels, and so on.
Events: Clicked DblClicked GotFocus

LostFocus MouseDown MouseUp
MouseMove MouseOver MouseEnter
MouseExit KeyDown KeyInput
KeyUp

Methods: Delete DoAction Draw
Erase EditPropert GetObject
Hide Highlight Insert
Invert MouseCapture Move
MoveTo MouseRelease Replace
Select Show

Properties: Action Border CanTab
Child ClassName DataConnected
Enable (C)Fill (C)Font
HasValue IsCompound IsForm
IsLabel IsReport IsPrinting
IsRecord IsSelected IsTableView
Name Next Parent
Prev PropertyList (C)Rect
ReDraw Taborder Type
Value View Visible

© DataEase International Ltd

43

Line
A Line object is a simple graphical shape - in this case a line - placed on a document.
Events: Clicked DblClicked GotFocus

LostFocus MouseDown MouseUp
MouseMove MouseOver MouseEnter
MouseExit KeyDown KeyInput
KeyUp

Methods: Delete DoAction Draw
Erase EditProperty GetObject
Hide Highlight Insert
Invert MouseCapture Move
MoveTo MouseRelease Replace
Select Show

Properties: Action CanTab Child
ClassName DataConnected (C)DipShade
HasValue IsCompound IsForm
IsLabel IsReport IsPrinting
IsRecord IsSelected IsTableView
Name Next Parent
Prev PropertyList (C)Rect
ReDraw Taborder Type
View Visible

© DataEase International Ltd

44

ListBox
The ListBox displays choices in a drop-down list.
Events: Clicked DblClicked GotFocus

LostFocus MouseDown MouseUp
MouseMove MouseOver MouseEnter
MouseExit KeyDown KeyInput
KeyUp ValueLoaded ValueChange
ValueRequired

Methods: Delete DoAction Draw
Erase EditProperty GetObject
Hide Highlight Insert
Invert MouseCapture Move
MoveTo MouseRelease Replace
Select Show

Properties: Action CanTab Child
ClassName DataConnected Enable
HasValue IsCompound IsForm
IsLabel IsReport IsPrinting
IsRecord IsSelected IsTableView
Name Next Parent
Prev PropertyList (C)Rect
ReDraw Taborder Type
Value View Visible

© DataEase International Ltd

45

OLE
An OLE Object is generated by an external software application, such as Microsoft Excel, and
either embedded or linked in a container document, such as a DataEase form.
Events: Clicked DblClicked GotFocus

LostFocus MouseDown MouseUp
MouseMove MouseOver MouseEnter
MouseExit KeyDown KeyInput
KeyUp

Methods: Delete DoAction Draw
Erase EditProperty GetObject
Hide Highlight Insert
Invert MouseCapture Move
MoveTo MouseRelease Replace
Select Show

Properties: Action CanTab Child
ClassName DataConnected Enable
HasValue IsCompound IsForm
IsLabel IsReport IsPrinting
IsRecord IsSelected IsTableView
Name Next Parent
Prev PropertyList (C)Rect
ReDraw Taborder Type
View Visible

© DataEase International Ltd

46

RadioBox (RadioButton)
The RadioBox displays choices as radio buttons.
Events: Clicked DblClicked GotFocus

LostFocus MouseDown MouseUp
MouseMove MouseOver MouseEnter
MouseExit KeyDown KeyInput
KeyUp ValueLoaded ValueChange
ValueRequired

Methods: Delete DoAction Draw
Erase EditProperty GetObject
Hide Highlight Insert
Invert MouseCapture Move
MoveTo MouseRelease Replace
Select Show

Properties: Action CanTab Child
ClassName DataConnected Enable
HasValue IsCompound IsForm
IsLabel IsReport IsPrinting
IsRecord IsSelected IsTableView
Name Next Parent
Prev PropertyList (C)Rect
ReDraw Taborder Type
Value View Visible

© DataEase International Ltd

47

Rectangle (Box Class Object)
A Rectangle object is a simple graphical shape - in this case a rectangle - placed on a
document. Do not confuse it with the Rect Class property.

Events: Clicked DblClicked GotFocus
 LostFocus MouseDown MouseUp

MouseMove MouseOver MouseEnter
MouseExit KeyDown KeyInput
KeyUp

Methods: Delete DoAction Draw
Erase EditProperty GetObject
Hide Highlight Insert
Invert MouseCapture Move
MoveTo MouseRelease Replace
Select Show

Properties: Action Border CanTab
Child ClassName DataConnected
Enable (C)Fill HasValue
IsCompound IsForm IsLabel
IsReport IsPrinting IsRecord
IsSelected IsTableView Name
Next Parent Prev
PropertyList (C)Rect RoundedCorners
ReDraw Taborder Type
View Visible

© DataEase International Ltd

48

Spin (Spin Button)
A SpinBox (also called a SpinButton) displays numeric values. Type in a value or use the
vertical arrow controls to display a value.
Events: Clicked DownArrowClicked DblClicked

GotFocus LostFocus MouseDown
MouseUp MouseMove MouseOver
MouseEnter MouseExit KeyDown
KeyInput KeyUp UpArrowClicked
ValueLoaded ValueChange ValueRequired

Methods: Delete DoAction Draw
Erase EditProperty GetObject
Hide Highlight Insert
Invert MouseCapture Move
MoveTo MouseRelease Replace
Select Show

Properties: Action CanTab Child
ClassName DataConnected Delay
Enable (C)Font HasValue
IsCompound IsForm IsLabel
IsReport IsPrinting IsRecord
IsSelected IsTableView Name
Next Parent Prev
PropertyList (C)Rect RectBorder
RectFill ReDraw Taborder
Type Value View
Visible

© DataEase International Ltd

49

Summary
A Summary Variable object displays summary information (e.g. page totals and running totals)
based on the application data. You can create Summary Variable objects in Headers and
Footers only.
Events: Clicked DblClicked GotFocus

LostFocus MouseDown MouseUp
MouseMove MouseOver MouseEnter
MouseExit KeyDown KeyInput
KeyUp

Methods: Delete DoAction Draw
Erase EditProperty GetObject
Hide Highlight Insert
Invert MouseCapture Move
MoveTo MouseRelease Replace
Select Show

Properties: Action CanTab Child
ClassName DataConnected Enable
HasValue IsCompound IsForm
IsLabel IsReport IsPrinting
IsRecord IsSelected IsTableView
Name Next Parent
Prev PropertyList (C)Rect
ReDraw Taborder Type
View Visible

© DataEase International Ltd

50

Class Properties
A Class Property does not directly define properties. Instead it uses either Simple Properties
or other Class Properties to define properties. There are fifteen general Class Properties in
DataEase 6, plus a further eleven Class Properties which are specific to 3D objects. These
twenty six Class Properties are described in the following pages.

© DataEase International Ltd

51

Font (Class Property)
Objects which display text - either as labels or textual and numeric values in fields - all have a
Font Class Property. By changing Font settings, you can alter a piece of text's size, style, and
other such details.

The Font Class Property has seven Simple Properties, namely;

Bold Size CharSet Under Italic Name Strike

Two other properties - Width and Height - may appear in the Properties Pick List. These are not
currently used, and should be ignored.

As with all Class Properties, you set them by specifying the Object name, followed by the Class
Name, followed by the Simple Property Name, followed by the value, e.g.

MyTextLabel.Font.Bold := 1 .

When you change a Font property, the change is not displayed until the object is redrawn, either
as a result of a user action, or through a script that uses the Show or Draw method.

The seven Simple Properties are now described.

Bold
This read/write flag determines if text in a font is displayed in bold.

Type
Number (Boolean).

Details
If the Bold property is true (1), text displayed using this font object appears in boldface; if false
(0), it does not.

Example
MyTextLabel.Font.Bold := 1 .

© DataEase International Ltd

52

Size
This read/write property is the size of a font, expressed in points.

Type
Number.

Details
The value must be a whole number; half-point and other fractions are not allowed. If you try to
set a fractional size via a script, the actual size is rounded up to the next integer.

You can choose any positive integer; you are not restricted to those sizes that appear on the
pre-set Size picklist in the Fonts dialog. Sizes above 400 points are not recommended for on-
screen use for practical reasons.

Negative values are converted to positive values. If the Size is set larger than the space in the
control allows, the text is clipped.

Example

MyTextLabel.Font.Size := 12 .

Italic
This read/write flag determines whether text in a font is displayed in italics.

Type
Number (Boolean).

Details
If the Italic property is true (1), text displayed using this Font object appears in italics; if false (0),
it does not.

Example
MyTextLabel.Font.Italic := 1 .

Name
This read/write property is the name of a font.

Type
Text.

Details
This identifies the name of the font (typeface) of the Font object. The Font properties of an
object are initially set when you define the object, but your script can subsequently modify them
- perhaps to add visual emphasis to an object.

The name is the name as it appears in the Font Name picklist of the Fonts dialog box.

Note that fonts are treated as belonging to one of two sets: characters or symbols. Character
fonts are most of the fonts you will use, such as Times New Roman and Arial: Symbols are fonts
like Symbol and WindDings.

You can only change fonts from the same type of set. For example, you can switch from Arial to
Arial Narrow, but not from Arial to Symbol.

© DataEase International Ltd

53

If the font name is not recognized (for example, it is mis-typed or not installed on the computer
in use), DataEase substitutes Times if the font was previously character-based, and Symbol if it
was previously symbol-based. It will also switch to these fonts if you try to swap between the
two sets, e.g. change from WingDings to Courier.

Example

MyTextLabel.Font.Name := Arial .

Strike
This read/write flag indicates whether text in a font is displayed with strikethrough.

Type
Number (Boolean).

Details
If the Strike property is true (1), text displayed using this font object appears with a
strikethrough; if false (0), it does not.

Example
MyTextLabel.Font.Strike := 0 .

Under
This read/write flag determines if text in a font is underlined.

Type
Number (Boolean)

Details
If the Under property is true (1), text displayed using this font object appears with underlining; if
false (0), it does not.

Example
MyTextLabel.Font.Under := 0 .

CharSet
Sets the Character Set to be used.

Type
Number

Details
There are three possible values: 0, 1 or 2.

0 …means use the standard Western Character Set. (Default value).

1 …means use the System Default Character Set.

2 …means use a Symbol Character Set.

Example

© DataEase International Ltd

54

MyField.font.Charset := 2 .

MyField.Font.Name := Wingdings .

Note: Selecting the Symbol Character Set is only half the job. You then have to specify which
Font you want to use. In the above example we have selected a Symbol Character Set, and
then asked for the Wingdings font.

© DataEase International Ltd

55

Color (Class Property)
The Color class property is used to change the colour of an object, such as a box, a line, or a
piece of text. You change the colour by setting values for Blue, Red, and Green - the three RBG
values from which all colours are derived in computer graphics. Values are in the range 0-255.

For example, setting Green=255, Red=0 and Blue=0 would produce a green colour. Setting
Green=255, Red=255 and Blue=255 would produce white, while Green=0, Red=0 and Blue=0
would produce black.

The Color Class is never called on its own, so you can not write a script such as:

CreditBox.Color.Red := 255 .

Instead, the Color Class is always called by other Object Classes - such as the Border and Fill
Class Properties.

Imagine you had a "Credit Worthy" box, normally displayed in green. You could create a script
which checked a client's credit rating, and if the rating was poor, the script could alter the "Credit
Worthy" Box to a Red display. The syntax would be:

If any CLUBS Credit_Rating = "No Way!" then

CreditBox.Fill.Color.Red := 255 .

CreditBox.Fill.Color.Green := 0 .

CreditBox.Fill.Color.Blue := 0 .

CreditBox.Redraw := 1 .

else

CreditBox.Fill.Color.Red := 0 .

CreditBox.Fill.Color.Green := 255 .

CreditBox.Fill.Color.Blue := 0 .

CreditBox.Redraw := 1 .

End .

…the "Redraw" command is necessary, to force the colour change to be displayed on screen.

With a little extra work, you could - depending on the client's exact credit worthiness - gradually
shade the Credit Worthy Box from green to red, by decreasing and increasing the relevant
colours.

As mentioned above, the three simple properties associated with the Color Class Property are:
Blue
Green
Red

Examples of their use are given overpage.

© DataEase International Ltd

56

Blue
This property specifies the saturation of blue coloring.

Type
Number.

Details:
Set this property to a value between 0 and 255. 0 specifies minimum saturation, 255 specifies
maximum.

Example
CreditBox.fill.Color.Blue := 0 .

Green
This property specifies the saturation of green coloring.

Type
Number.

Details:
Set this property to a value between 0 and 255. 0 specifies minimum saturation, 255 specifies
maximum.

Example
CreditBox.fill.Color.Green := 10 .

Red
This property specifies the saturation of red coloring.

Type
Number.

Details:
Set this property to a value between 0 and 255. 0 specifies minimum saturation, 255 specifies
maximum.

Example
CreditBox.fill.Color.Red := 128 .

© DataEase International Ltd

57

Fill (Class Property)
Most objects use the Fill Class Property to set the following three properties of an object.

Color (Color is itself a Class Property - see Color
Style
Hatch

A fill object may be made transparent by setting its Style property to 1. An object can have a
solid fill of a particular color, a fill of a specified pattern, or no fill.
The effect of changing an object's Fill property is not displayed until the object is redrawn,
either as the result of a user action or through a script that redraws the object.

Style
Style holds a number indicating whether the object is transparent, opaque, or hatched. If Style
is hatched, then Hatch is a number indicating how the control face is painted (such as solid,
diagonal lines, or vertical lines).

Type
Number:

Details
0 = Solid
1 = No Fill (transparent)
2 = Hatch (patterned)

Example
MyObject.fill.style := 2 .

Hatch
This read/write property controls the type of pattern to use for a fill.

Type
Number:

Details
0 = Horizontal Lines1 = Vertical Lines2 = Diagonal from top left to bottom right3 = Diagonal
from top right to bottom left4 = Grid Hatch5 = Cross Hatch

Example
MyObject.fill.hatch := 3 .

© DataEase International Ltd

58

Remember that you can only set the hatch property if the Style is set to Hatch (2), so the full
example would be:

MyObject.fill.style := 2 .

MyObject.fill.hatch := 3 .

MyObject.redraw := 1 .

Color
Color is itself a Class Property. See Color.

© DataEase International Ltd

59

Border (Class Property)
The Border class is used to define borders around the perimeters of on-screen objects. The
Border is drawn immediately inside an object's rectangle. The border of an object is separate
from the three-dimensional look of the object – which is governed by the 3D special effect
properties.
The Border properties of an object are normally specified through the Display dialog box, but
you may use a script to change them in order to visually highlight a special condition.
The Border Class has three properties:

Color (Color is itself a Class Property - see Color
Style
WidthX

A fourth property WidthY - may appear in the Property Pick List, but this property is not
implemented and should be ignored.

Style
Style determines how the border is drawn, but it will only take effect if WidthX (the line
thicknesses of the horizontal and vertical drawing strokes) is greater than 0.
The effect of changing a Border property of an object will not appear until the object is
redrawn, either as a result of a user action or through a script that redraws the object.

Type
Number

Details
The number represents a style for the border, depending on the type of object and the width of
the border. As long as the border is set to either 0 or 1, the styles for Line objects are as
follows:
0 = Solid
1 = Long Dashed
2 = Short Dashed
3 = Alternating dash and dot
4 = Alternating dash and double dot
5 = None
6 = InsideFrame (same as Solid)
Any other positive number gives a line style of ‘none’; all negative numbers give a solid line.

For all other objects which use Borders, the styles are:
0 = Solid
1 = Solid
2 = Short Dashed (same as for a Line object)

© DataEase International Ltd

60

All other numbers – positive or negative – give a solid line.

WidthX
Usually initialized by highlighting the Border option in the in the Display Properties Dialog and
then selecting an option from the Line Type picklist, this read/write property indicates the
thickness of an object's border.
The effect of changing a Border property of an object will not appear until the object is
redrawn, either as a result of a user action or through a script that redraws the object.

Type
Number.

Details
WidthX is the thickness of the border (on all sides). The thickness of a border increases
inward, remaining inside the defined rectangle.
The WidthX property of an object's border is designed using the Display dialog box, and fixed
after that, but it can be modified through a script to visually highlight a special condition. As
with all OML Scripted visual changes to an object, these are run-time changes, and the display
properties will return to their original values when the form is closed.
Note that a WidthX value of anything other than 0 or 1 makes the border style solid, no matter
what the value for its Style property is.

Example
MyBoxObject.border.Widthx := 40

...which would set an extremely wide border inside the object.

© DataEase International Ltd

61

3D Class Properties
When you define a 3D object you are given the opportunity to define a number of special visual
effects. These are:

DipShade LowShine
DipShine RimShade
HighShade RimShine
Shadow HighShine
TextShade LowShade
TextShine

These eleven Class Properties all provide special colour effects on 3D objects, and all are
called with exactly the same syntax.
Each of these eleven 3D properties calls the Red, Green and Blue colour properties. Examples
are shown below.

My3Dobject.HighShade.red := 255 .

My3Dobject.HighShade.green := 255 .

My3Dobject.HighShade.blue:= 255 .

My3Dobject.HighShine.blue := 0 .

My3Dobject.HighShine.red := 255 .

My3Dobject.HighShine.green := 0 .

..and so on.

The three color class properties are used to change the colour of an object, such as a box, a line,
or a piece of text. You change the colour by setting values for Blue, Red, and Green - the three
RBG values from which all colours are derived in computer graphics. Values are in the range 0-
255.

For example, setting Green=255, Red=0 and Blue=0 would produce a green colour. Setting
Green=255, Red=255 and Blue=255 would produce white, while Green=0, Red=0 and Blue=0
would produce black.

The Red, Green and Blue properties are described below.

Blue
This property specifies the saturation of blue coloring.

Type
Number.

Details:
Set this property to a value between 0 and 255. 0 specifies minimum saturation, 255 specifies
maximum.

© DataEase International Ltd

62

Example
My3DEditBox.lowshine.Blue := 0 .

Green
This property specifies the saturation of green coloring.

Type
Number.

Details:
Set this property to a value between 0 and 255. 0 specifies minimum saturation, 255 specifies
maximum.

Example
My3DEditBox.highshine.Green := 10 .

Red
This property specifies the saturation of red coloring.

Type
Number.

Details:
Set this property to a value between 0 and 255. 0 specifies minimum saturation, 255 specifies
maximum.

Example
My3DEditBox.dipshine.Red := 128 .

© DataEase International Ltd

63

Shine (Class Property)
The Button Shine effect is not currently implemented.
The Shine Class Property is used to set the colour of the 'shine effect' in Button objects. You
change the colour by setting values for Blue, Red, and Green - the three RBG values from
which all colours are derived in computer graphics. Values are in the range 0-255.
For example, setting Green=255, Red=0 and Blue=0 would produce a green colour. Setting
Green=255, Red=255 and Blue=255 would produce white, while Green=0, Red=0 and Blue=0
would produce black.
Shine sets three Simple Properties, namely:
Green
Blue
Red

Red
This property specifies the saturation of red coloring.

Type
Number.

Details:
Set this property to a value between 0 and 255. 0 specifies minimum saturation, 255 specifies
maximum.

Example
CreditBox.shine.Red := 255 .

Blue
This property specifies the saturation of blue coloring.

Type
Number.

Details:
Set this property to a value between 0 and 255. 0 specifies minimum saturation, 255 specifies
maximum.

Example
CreditBox.shine.Blue := 128 .

© DataEase International Ltd

64

Green
This property specifies the saturation of green coloring.

Type
Number.

Details:
Set this property to a value between 0 and 255. 0 specifies minimum saturation, 255 specifies
maximum.

Example
CreditBox.shine.Green := 10 .

© DataEase International Ltd

65

Shade (Class Property)
The Button Shade effect is not currently implemented.
The Shade Class Property is used to set the colour of the 'shade effect' in Button objects. You
change the colour by setting values for Blue, Red, and Green - the three RBG values from
which all colours are derived in computer graphics. Values are in the range 0-255.
For example, setting Green=255, Red=0 and Blue=0 would produce a green colour. Setting
Green=255, Red=255 and Blue=255 would produce white, while Green=0, Red=0 and Blue=0
would produce black.
Shade sets three Simple Properties, namely:
Blue
Red
Green

Red
This property specifies the saturation of red coloring.

Type
Number.

Details:
Set this property to a value between 0 and 255. 0 specifies minimum saturation, 255 specifies
maximum.

Example
CreditBox.shade.Red := 128 .

Blue
This property specifies the saturation of blue coloring.

Type
Number.

Details:
Set this property to a value between 0 and 255. 0 specifies minimum saturation, 255 specifies
maximum.

Example
CreditBox.shade.Blue := 0 .

© DataEase International Ltd

66

Green
This property specifies the saturation of green coloring.

Type
Number.

Details:
Set this property to a value between 0 and 255. 0 specifies minimum saturation, 255 specifies
maximum.

Example
CreditBox.shade.Green := 10 .

© DataEase International Ltd

67

Rect (Class Property)
The Rect Class Property describes the on-screen rectangular area occupied by an object.
(Don't confuse it with the Rectangle, which is just a graphic object). Objects which use Rect
include Edit Boxes, CheckBoxes, Rectangles, and Text Labels. The four properties of a
rectangle object define the X and Y co-ordinates that fully describe the object's display area.
The four properties are:
Top
Bottom
Left
Right

You can determine the object's current location by reading its four Rect properties.

Example
Type the following script on a Button>>Clicked event.

Rect.Top := Rect.Top 10 .
Rect.Bottom := Rect.Bottom 10 .
Rect.Left := Rect.Left 10 .
Rect.Right := Rect.Right 10 .
Hide() .
Show() .
Draw() .

..which will shift the button to the right and down every time you click on it. If you assign
different values to these four properties - say, 10, 30, 10, 30 - then both the position and size
of the object will be changed.

Limitations
If the Top coordinate is greater than or equal to the Bottom, or the Left coordinate is greater
than or equal to the Right, no rectangle is defined, and the object will disappear from view.

Top
Position of rect top. Increasing the value moves the top border edge down. Decreasing it
moves the edge up.

Bottom
Position of rect bottom. Increasing the value moves the bottom border edge down. Decreasing
it moves the edge up.

Left
Position of rect left. Increasing the value moves the left border edge right. Decreasing it moves
the edge left.

Right
Position of rect right. Increasing the value moves the right border edge right. Decreasing it
moves the edge left.

© DataEase International Ltd

68

RectBorder (Class Property)
Most objects use the Border Class Property to select the style, color and width of the border
which surrounds the object itself.
The SpinBox and 3DspinBox (also called SpinButtons) have two separate 'border' areas - the
data-area, and the 'spin arrows' themselves. So to define these areas they need two Class
Properties instead of one. These Class Properties are RectBorder and ScrollBorder.
The RectBorder Class Property is used to define borders around the perimeters of the spin-
box's data-area. The Border is drawn immediately inside the data-area's rectangle. (Note that
this border of is separate from the three-dimensional look of a 3D SpinBox – which is governed
by the 3D special effect properties).
The RectBorder properties of are normally specified through the Display dialog box, but you
may use a script to change them in order to visually highlight a special condition.
The RectBorder Class has three properties:

Color (Color is itself a Class Property - see Color
WidthX

A fourth property WidthY - may appear in the Property Pick List, but this property is not
implemented and should be ignored.

Style
Style determines how the border is drawn, but it will only take effect if WidthX (the line
thicknesses of the horizontal and vertical drawing strokes) is greater than 0.
The effect of changing a RectBorder property of an object will not appear until the object is
redrawn, either as a result of a user action or through a script that redraws the object.

Type
Number

Details
The number represents a style for the border. The styles are:
0 = Solid
1 = Solid
2 = Short Dashed

All other numbers – positive or negative – give a solid line.

© DataEase International Ltd

69

WidthX
Usually initialized by highlighting the Border option in the in the Display Properties Dialog and
then selecting an option from the Line Type picklist, this read/write property indicates the
thickness of an object's border.
The effect of changing a RectBorder property of an object will not appear until the object is
redrawn, either as a result of a user action or through a script that redraws the object.

Type
Number.

Details
WidthX is the thickness of the border (on all sides). The thickness of a border increases
inward, remaining inside the defined rectangle.
The WidthX property of an object's border is designed using the Display dialog box, and fixed
after that, but it can be modified through a script to visually highlight a special condition. As
with all OML Scripted visual changes to an object, these are run-time changes, and the display
properties will return to their original values when the form is closed.
Note that a WidthX value of anything other than 0 or 1 makes the border style solid, no matter
what the value for its Style property is.

Example
My3DSpinBox.rectborder.Widthx := 40

...which would set an extremely wide border inside the object.

© DataEase International Ltd

70

RectFill (Class Property)
This Class property applies to the SpinBox and 3DspinBox objects only.
Most objects use the Fill Class Property to set the following three properties of an object.
Color (Color is itself a Class Property - see Color
Style
Hatch

...but the Spin Box and 3DspinBox (spinbuttons) have two separate components - the 'data-
area' and the 'spin-button' area - so they require two sets of commands to distinguish between
these areas. These two Class Properties are RectFill and BorderFill.
RectFill sets the Color, Style and Hatch of the data-area, while BorderFill sets the color, style
and hatch of the spin-button area.
Using Rectfill, an object's data-area may be made transparent by setting its Style property to 1.
An object can have a solid fill of a particular color, a fill of a specified pattern, or no fill.
The effect of changing an object's RectFill property is not displayed until the object is redrawn,
either as the result of a user action or through a script that redraws the object.

Style
Style holds a number indicating whether the object is transparent, opaque, or hatched. If Style
is hatched, then Hatch is a number indicating how the control face is painted (such as solid,
diagonal lines, or vertical lines).

Type
Number:

Details
0 = Solid
1 = No Fill (transparent)
2 = Hatch (patterned)

Example
My3DSpinBox.Rectfill.style := 2 .

© DataEase International Ltd

71

Hatch
This read/write property controls the type of pattern to use for a fill.

Type
Number:

Details
0 = Horizontal Lines1 = Vertical Lines2 = Diagonal from top left to bottom right3 = Diagonal
from top right to bottom left4 = Grid Hatch5 = Cross Hatch

Example
MySpinButton.Rectfill.hatch := 3 .

Remember that you can only set the hatch property if the Style is set to Hatch (2), so the full
example would be:

MySpinButton.Rectfill.style := 2 .

MySpinButton.Rectfill.hatch := 3 .

MySpinButton.redraw := 1 .

Color
Color is itself a Class Property. See Color

© DataEase International Ltd

72

ScrollBorder(Class Property)
Most objects use the Border Class Property to select the style, color and width of the border
which surrounds the object itself.
The SpinBox and 3DspinBox (also called SpinButtons) have two separate 'border' areas - the
data-area, and the 'spin arrows' themselves. So to define these areas they need two Class
Properties instead of one. These Class Properties are RectBorder and ScrollBorder.
The ScrollBorder Class Property is used to define borders around the perimeters of the spin-
box's spin-buttons. The Border is drawn immediately inside the spin buttons' rectangle. (Note
that this border of is separate from the three-dimensional look of a 3D SpinBox – which is
governed by the 3D special effect properties).
The ScrollBorder properties of are normally specified through the Display dialog box, but you
may use a script to change them in order to visually highlight a special condition.
The ScrollBorder Class has three properties:

Color (Color is itself a Class Property - see Color
Style
WidthX

A fourth property WidthY - may appear in the Property Pick List, but this property is not
implemented and should be ignored.

Style
Style determines how the border is drawn, but it will only take effect if WidthX (the line
thickness of the horizontal and vertical drawing strokes) is greater than 0.
The effect of changing a ScrollBorder property of an object will not appear until the object is
redrawn, either as a result of a user action or through a script that redraws the object.

Type
Number

Details
The number represents a style for the border. The styles are:
0 = Solid
1 = Solid
2 = Short Dashed

All other numbers – positive or negative – give a solid line.

© DataEase International Ltd

73

WidthX
Usually initialized by highlighting the Border option in the in the Display Properties Dialog and
then selecting an option from the Line Type picklist, this read/write property indicates the
thickness of an object's border.
The effect of changing a ScrollBorder property of an object will not appear until the object is
redrawn, either as a result of a user action or through a script that redraws the object.

Type
Number.

Details
WidthX is the thickness of the border (on all sides). The thickness of a border increases
inward, remaining inside the defined rectangle.
The WidthX property of an object's border is designed using the Display dialog box, and fixed
after that, but it can be modified through a script to visually highlight a special condition. As
with all OML Scripted visual changes to an object, these are run-time changes, and the display
properties will return to their original values when the form is closed.
Note that a WidthX value of anything other than 0 or 1 makes the border style solid, no matter
what the value for its Style property is.

Example
My3DSpinBox.Scrollborder.Widthx := 40

...which would set an extremely wide border inside the object.

© DataEase International Ltd

74

ScrollFill(Class Property)
This Class property applies to the SpinBox and 3DspinBox objects only.
Most objects use the Fill Class Property to set the following three properties of an object.
Color (Color is itself a Class Property - see Color
Style
Hatch

...but the Spin Box and 3DspinBox (spinbuttons) have two separate components - the 'data-
area' and the 'spin-button' area - so they require two sets of commands to distinguish between
these areas. These two Class Properties are RectFill and BorderFill.
RectFill sets the Color, Style and Hatch of the data-area, while BorderFill sets the color, style
and hatch of the spin-button area.
Using Scrollfill, an object's spin-button may be made transparent by setting its Style property to
1. An object can have a solid fill of a particular color, a fill of a specified pattern, or no fill.
The effect of changing an object's ScrollFill property is not displayed until the object is
redrawn, either as the result of a user action or through a script that redraws the object.

Style
Style holds a number indicating whether the object is transparent, opaque, or hatched. If Style
is hatched, then Hatch is a number indicating how the control face is painted (such as solid,
diagonal lines, or vertical lines).

Type
Number:

Details
0 = Solid
1 = No Fill (transparent)
2 = Hatch (patterned)

Example
My3DSpinBox.Scrollfill.style := 2 .

Hatch
This read/write property controls the type of pattern to use for a fill.
Type
Number:
Details
0 = Horizontal Lines1 = Vertical Lines2 = Diagonal from top left to bottom right3 = Diagonal
from top right to bottom left4 = Grid Hatch5 = Cross Hatch

Example
MySpinButton.Scrollfill.hatch := 3 .

© DataEase International Ltd

75

Parent(Class Property)

The Parent Class Property is used to query the current object's Parent, just as the Child Class
Property is used to query a Form's children.
Currently Parent and Child apply only to Forms and Subforms. A SubForm has a Parent, and a
form with a subform has a Child.
The Parent Class Property has two simple properties:
Name : returns the name (the form name) of the Parent Form.
ClassName : returns the class of the Parent - always a Form.

Example:
Myvariable = MySubform.parent.name .

...which would place the name of the subform's Parent Form in the variable Myvariable.

© DataEase International Ltd

76

Child(Class Property)
The Child Class Property is used to query the current object's Children, just as the Parent
Class Property is used to query a Form's parent.
Currently Child and Parent apply only to Forms and Subforms. A SubForm has a Parent, and a
form with a subform has a Child.
The Child Class Property has two simple properties:
Name : returns the name (the form name) of the Child Form.
ClassName : returns the class of the Child - always a Subform.

Example:
Myvariable = MySubform.child.name .

...which would place the name of the form's first Child Form in the variable Myvariable.

© DataEase International Ltd

77

Next(Class Property)
The Next Class Property is used to identify the next object in a list of form objects.
There are two simple properties in Next, namely:
Name : Returns the Name of the object.
ClassName : Returns the ClassName of the object - Box, Ellipse, etc.

..both of which are read only properties.

Example:
You have a form with two objects - a field called "Customer" and a field called "Phone". Place
the following script in the Customer object.

MyVariable = myformname.next.name

…which would place the name of the next object (Phone) in the form in the variable called
MyVariable.
Note that objects in a Form are listed from top left to bottom right of the form.
To reverse the search, use the Prev Class Property. This works in exactly the same way as
Next, but searches upwards through the list of objects, rather than downwards.

© DataEase International Ltd

78

Prev(Class Property)
The Prev Class Property is used to identify the previous object in a list of form objects.
There are two simple properties in Prev, namely:
Name : Returns the Name of the object.
ClassName : Returns the ClassName of the object - Box, Ellipse, etc.

..both of which are read only properties.

Example:
You have a form with two objects - a field called "Customer" and a field called "Phone". Place
the following script in the Phone object.

MyVariable = myformname.prev.name

…which would place the name of the previous object (Customer) in the form in the variable
called MyVariable.
Note that objects in a Form are listed from top left to bottom right of the form.
To reverse the search, use the Next Class Property. This works in exactly the same way as
Next, but searches downwards through the list of objects, rather than upwards.

© DataEase International Ltd

79

Example Scripts: Input Validation with PostEdit
This script demonstrates how the PostEdit Event can be used to perform dynamic validation,
by automatically testing values as they are typed in by the user. This example script rejects
any input which contains spaces in the value.

Select the event to script as: MyEditBox>> PostEdit.
…where MyEditBox is the name of the EditBox you wish to validate.
Note that the PostEdit String parameter contains the user's input data, while the original
(retrieved from the Table) value is held in the MyEditBox Value property.

Now write the following script:

if textpos(String, " ") > 0 then

 message "Please re-input without spaces!"
window .

else

 return(1) .

end

Result: If the user types in a space character, and then leaves the field, a warning message is
displayed on screen. Focus remains in the field.

Note: DataEase is unusual in that the event parameter return() does not hold a Boolean
value, and moreover treats the values "0" and "1" as both meaning True. Any result other than
0 or 1 means False.
So if you are testing for a False condition, write return(2). DataEase will recognise the 2 as
being a False value.

© DataEase International Ltd

80

Example Scripts: ValueLoaded Event
The following two examples show how the ValueLoaded Event can be used to carry out a
record-by-record check. When the check-condition is triggered, the field being checked
changes colour.
The first example shows the script working in a form document, and the second example
shows the script working in a report.

Example 1: On the Form Document
Select the event to script as: MyEditBox>> ValueLoaded, then type in the following script.

if salary.value not= blank then
 if salary.visible = 1 then

 if abs(salary.value) > 30000 then

 fill.color.green := 0 .

 fill.color.blue := 0 .

 else

 fill.color.green := 255 .

 fill.color.blue := 255 .

 end

 salary.visible := 0 .

 else

 salary.visible := 1 .

 end

 redraw := 1 .

 return(1) .

end

Result: Whenever a record is opened, the script will change the Salary Field to Red, if the
salary is greater than 30,000.
Note: Because the ValueLoaded Event fires twice for each record, the script uses a 'dummy'
outer loop - if salary.visible = 1 then - to ignore the first Event.

© DataEase International Ltd

81

Example 2: On a Report Document
Note: To work as shown, the report must be WYSIWYG and the field must have a solid fill).

1 Select the event to script as: MyEditBox>> ValueLoaded.
2 Type in the following script.

if abs(salary.value) > 40000 then

 salary.fill.color.green := 0 .

salary.fill.color.blue := 0 .

salary.fill.color.red := 255 .

 redraw := 1 .

end

Result: If the record being reported on has a salary greater than 40,000, then the salary field
will be displayed in red.
Note: Since the report only triggers the ValueLoaded event once, there is no need for a
dummy outer loop, as was shown in the form document example.

© DataEase International Ltd

82

Example Scripts: Report Totals
This example shows how a report total can be used to calculate a further total - say, a fixed
postage and packing charge added to an invoice total. The example below assumed a fixed
postage of £2.40.
Place your script in the SummaryField>>ValueLoaded Event. You will also need to create a
text label named LblFinalResult, and place this beneath the SummaryField.

number pos .

text tAnswer .

tAnswer := concat(abs(Value) 2.40, blank) .

pos := textpos(tAnswer ,".") .

if pos = 0 then

 tAnswer := concat(tAnswer, ".00") .

else

 if pos= length(tAnswer) - 1 then

 tAnswer := concat(tAnswer, "0") .

 else

 tAnswer := firstc(tAnswer, pos 2) .

 end

end

LblFinalResult.TextString := tAnswer .

Result: The LbLFinalResult label displays the invoice value plus £2.40. Notice that the DQL
TextPos command is used to correctly format the final answer, adding trailing "0''s as required
so that "15" becomes "15.00" and "26.3" becomes "26.30".

© DataEase International Ltd

83

Example Scripts: Realtime Data Processing
Discussion
The following example assumes the existence of a table called STOCK_MASTER, to which
there exists a related table named DAILY_SALES.
Entries in DAILY_SALES must instantly reduce stock levels in STOCK_MASTER for that
Stock_Code, and simultaneously archive the sales data into a table called HISTORY.
The relationship from either HISTORY or DAILY_SALES to STOCK_MASTER has been
created and is called rMASTER.
Historically, DataEase developers would create the DAILY_SALES screen either as a DQL
procedure's data-entry form, or use the 'input using' DQL statement.
Here is it done by putting a real-time processing button on the DAILY_SALES screen and
suppressing via the menu and toolbar any ability for the user to create records in
DAILY_SALES.

The script for the button clicked event is....

-- Process realtime

define "tCODE" Numeric String 3 .

define "tQTY" Number .

define "dummy" Number .

define "tPassedInfo" text 255 .

assign tCode := Stock_Code.Value .

assign tQTY := Qty_Sold.Value .

tPassedInfo := concat(tCODE, "^", tQTY) .

dummy := SetArray(1, tPassedInfo) .

run procedure "MakeHistory" .

message "Input has been processed..!" window .

tQTY := RecordRestore() .

-- end of script

This script passes the data entered onto the screen to a DQL procedure in a string using the
SetArray CDF (supplied with DataEase in the CDFS2.DLL library). This CDF has to be
registered in the Custom Functions form, as does another CDF - RecordRestore - which is
supplied in the DFWACTS.DLL CDF library.

© DataEase International Ltd

84

RecordRestore is used to prevent DataEase from asking "save the changes?" when the
screen is cleared in DAILY_SALES . It then calls a separately written DQL process which
reads the values from the passed global string using GetArray (the matching part of SetArray),
then carries out the modification and creation routines.

the MakeHistory DQL reads....

define "tCODE" Numeric String 3 . define "tQTY"
Number .

define "dummy" Number . define "tPassedInfo" text
255 .

tPassedInfo := GetArray(1) .

if textpos(tPassedInfo , "^") not = 4 then

 exit .

end

tCode := firstc(tPassedInfo, 3) .

tQTY := midc (tPassedInfo, 5, 255) .

modify records in STOCK_MASTER named "match"

 with (Stock_Code = tCode)

 Qty_Held := Qty_Held - abs(tQTY) .

enter a record in HISTORY

 Stock_Code := tCode ;

 Qty_Sold := tQTY ;

 Date := current date .

dummy := SetArray (1, "") .

© DataEase International Ltd

85

Example Scripts: Conditional Subform Display
Subform Display is User Choice
Here is an example of how you can create conditionally displaying subforms.
The code is based on Club ParaDease, and will make the subform CLUB ACTIVITIES hidden
when the form CLUBS opens. CLUB ACTIVITIES can then be displayed by clicking on a
button, and hidden again by clicking another button.

1 Open CLUBS and Create a Text Label called HideFlag.
2 Type the value ON into HideFlag.
3 Put the following code in the ValueLoaded event on CLUB NAME.

If HideFlag.TextString = "ON" then
HideFlag.TextString := "OFF" .
HideFlag.Hide() .
CLUB ACTIVITIES.Hide() .
else
end

4 Create a button called ActivitiesOn.
5 In the clicked event on this button put the following code.

CLUB ACTIVITIES.Show() .

6 Create a button called ActivitiesOff.
7 In the clicked event on this button put the following code.

CLUB ACTIVITIES.Hide() .

Subform display is automatic
While the above example allows the user to hide or display the Subform at will, the example
below requires just one OML Script to automatically hide the subform is there is no matching
data, and display if it there IS matching data.
This example uses the RESERVATIONS form of Club ParaDease.

1 Open RESERVATIONS and put the following code in the ValueLoaded event on the Last
Name field.

if count of RESERVATION DETAIL = 0 then
RESERVATION DETAIL.Hide() .
else
RESERVATION DETAIL.Show() .
end

This will hide the subform if there are no matching records, and display it if there are 1 or more
matching record. When the form is initially displayed, there are no matching records, so the
subform will be hidden.

© DataEase International Ltd

86

Additions in 6.5 OML
DataEase 6.5 introduced a number of improvements to OML Scripting. The major differences
are listed below.

New Toolbar Icons
Previous versions of DataEase 6 did not have facilities to switch the OML Scripting Pick-Lists
on or off, which made the Edit Screen a little crowded for people who were writing DQL.
This oversight is corrected in 6.5, which contains four Toolbar Icons which control the OML-
specific Pick-Lists, namely Objects, Classes, Properties and Methods.
Clicking one of the icons shown below will toggle the appropriate Pick-List on or off.

Note that when you close and re-open the form, the DQL/OML Script Editor will default to
displaying all the Pick-Lists.

Enter Key and Button Focus
In previous versions of DataEase a Button Object’s clicked event OML script was fired when
the button was clicked – but not when the Enter key was pressed. This was incorrect - since in
Windows the action of ‘clicking’ a button and hitting the enter key while the focus is on a button
– should be the same.
This inconsistent behavior has now been corrected. In 6.5, a Button Object’s clicked event
OML script will be fired if the button is clicked, or if the Enter key is pressed while the button
has focus.

Bold Pick Lists
Objects and Methods that have OML script attached are now shown in bold typeface in the
Script Editor, so you can tell at a glance where your OML scripts are in place.

© DataEase International Ltd

87

Optional Object Names
DataEase 6.5 allows you to assign Object Names to Field objects and Summary Fields, so that
they can be manipulated by OML scripts.

In previous versions you were not able to make DataEase differentiate in scripts between a
table field and a field object (edit box, or list box, etc.), which is used to display data in a table,
because they had the same names. Similarly, all summary fields were named ‘Summary’,
which posed particular limitations: for example, it was impossible to change the background
colour of summary fields because fields were not objects.
The object-oriented approach implemented in DataEase 6.5 removes these constraints: now
you can optionally give Field objects and Summary fields Object Names that will be unique, the
default Object names coinciding with the Field Names.
So a data-related control (or field object) can be processed in scripts (OML) as soon as it has
got its own unique Object name.

New Event Parameters
 The following events’ parameters now return data: See Keyboard Events.

• KeyInput (number KeyValue),
• KeyDown (number KeyValue),
• KeyUp (number KeyValue),

© DataEase International Ltd

88

Alphabetical Command List

Events
Clicked DblClicked DownArrowClicked
GotFocus LostFocus MouseDown
MouseUp MouseMove MouseOver
MouseEnter MouseExit PostEdit
PredEdit KeyDown KeyInput
KeyUp UpArrowClicked ValueLoaded
ValueChange ValueRequired

Methods
Delete DoAction Draw
Erase EditProperty GetObject
Hide Highlight Insert
Invert MouseCapture Move
MoveTo MouseRelease Replace
Select Show

Properties
Simple Properties are listed by their Name only, while Class properties are proceeded by the
letter (C).
Action (C)Border Backpoint CanTab
Child ClassName DataConnected Delay
(C)DipShade (C)DipShine Enable (C)Fill
(C)Font FrontPoint HasValue (C)HighShade
(C)HighShine IsCompound IsForm IsLabel
IsLiveReport IsPrinting IsRecord IsReport
IsSelected IsTableView Justify (C)LowShade
(C)LowShine Name (C)Next (C)Parent
(C)Prev PropertyList (C)Rect (C)RectBorder
(C)RectFill ReDraw (C)RimShade (C)RimShine
RoundedCorners (C)ScrollBorder (C)ScrollFill (C)Shade
(C)Shine (C)Shadow Taborder TextString
TextMargin TextSlantinDegrees (C)TextShade (C)TextShine
Thickness Type Value View
Visible Wrap

© DataEase International Ltd

89

Index

3D Class Properties, 61
3DcheckBox (3DRadioButton), 28
3DeditBox, 29
3Dlabel, 30
3Dline, 31
3DlistBox, 32
3DradioBox, 33
3Dspin, 34
Action, 24
Application Variable, 35
Backpoint, 24
Blue, 56
Bold, 51
Border, 24
Border (Class Property), 59
Bottom, 67
Button, 36
CanTab, 24
CharSet, 53
Checkbox, 37
Child, 24
Child(Class Property), 76
Class, 3
Class Properties, 4, 50
ClassName, 24
Clicked, 17
Color, 58
Color (Class Property), 55
comparison operators, 11
Conditional Logic, 12
Conditional Subform Display, 85
Control, 3
Control Commands, 10
Data Model, 4, 8
DataConnected, 24
DblClicked, 17
Defining an Event Script, 5
Delay, 24

Delete, 21
DipShade, 24
DipShine, 25
Displaying Changes, 13
DoAction, 21
DownArrowClicked, 17
DQL Functions, 11
DQL in Scripts, 8
DQL symbols, 11
Draw, 21
Draw() method, 13
EditBox, 38
EditProperty, 21
Ellipse, 39
Enable, 25
Erase, 21
Error Messages, 14
Event, 3
Event Strings, 16
Event/Methods, 4
Events, 15
ExecuteVerbList, 21
Fill, 25
Fill (Class Property), 57
Font, 25
Font (Class Property), 51
FrontPoint, 25
GetObject, 21
GetVerbList, 21
Global Variables, 7
GotFocus, 17
Green, 56
HasValue, 25
Hatch, 57
Hide, 21
Highlight, 21
HighShade, 25
HighShine, 25

© DataEase International Ltd

2

Image (Picture), 40
ImageField, 41
Input Validation, 79
Instantiation, 3
Invert, 21
IsCompound, 25
IsForm, 25
IsLabel, 25
IsLiveReport, 25
IsPrinting, 25
IsRecord, 25
IsReport, 25
IsSelected, 25
IsTableView, 25
Italic, 52
Justify, 25
KeyDown, 19
KeyInput, 19
KeyUp, 19
Label, 42
Left, 67
Line, 43
List of Events, 17
List of Methods, 21
List of Objects, 27
ListBox, 44
Local Variables, 7
Lost Scripts, 14
LostFocus, 18
LowShade, 25
LowShine, 25
Method, 3
Methods, 21
MouseCapture, 21
MouseDown, 18
MouseEnter, 19
MouseExit, 19
MouseMove, 19
MouseOver, 19
MouseRelease, 21
MouseUp, 19
Move, 21

MoveTo, 21
Multiview, 4
MultiView, 8
Name, 25, 52
Next, 25
Next(Class Property), 77
nsert, 21
Object, 3
Objects, 27
OLE, 45
Parent, 26
PostEdit, 18
PreEdit, 17
Prev, 26
Prev(Class Property), 78
Procedural Commands, 10
Processing Commands, 9
Properties, 23
Property, 4
Property List, 24
PropertyList, 26
RadioBox (RadioButton), 46
Realtime Data Processing, 83
Rect, 26
Rect (Class Property), 67
Rectangle (Box Class Object), 47
RectBorder, 26
RectBorder (Class Property), 68
RectFill, 26
RectFill (Class Property), 70
Red, 56
ReDraw, 26
ReDraw property, 13
Relational Statistical Operators, 12
Replace, 22
Report Totals, 82
Right, 67
RimShade, 26
RimShine, 26
RoundedCorners, 26
Script Syntax, 6
ScrollBorder, 26

© DataEase International Ltd

3

ScrollBorder(Class Property), 72
ScrollFill, 26
ScrollFill(Class Property), 74
Select, 22
Shade, 26
Shade (Class Property), 65
Shadow, 26
Shine, 26
Shine (Class Property), 63
Show, 22
Show() method, 13
Simple Properties, 4
Size, 52
Sorting and Grouping Operators, 9
Spin (Spin Button), 48
Strike, 53
Style, 57
Style (Border), 59
Summary Variable, 49
Taborder, 26
TextMargin, 26

TextShade, 26
TextShine, 26
TextSlantinDegrees, 26
TextString, 26
The Event Return, 15
Thickness, 26
Top, 67
Type, 26
Under, 53
UpArrowClicked, 19
Using the Pick Lists, 6
Value, 26
ValueChange, 18
ValueLoaded, 18
ValueLoaded Event, 80
ValueRequired, 18
Variables in Scripts, 7
View, 26
Visible, 26
WidthX (Border), 60
Wrap, 26

	OML Scripting Guide
	
	Displaying Changes 	13
	Lost Scripts and Error Messages 	14
	Introduction to Events 	15
	The Event List 	17
	Introduction to Methods 	21
	Input Validation with PostEdit 	79

	Introduction to OML Scripting
	
	Class
	The prototype of an object, registered with DataEase or Windows. Sometimes called a template.
	Instantiation
	Object
	Control
	Method
	Event
	Property
	Data Model
	Multiview
	Simple Properties
	Class Properties

	Defining an OML Script
	Variables in Scripts
	DQL in OML Scripts
	
	Processing Commands
	Sorting and Grouping Operators
	Control Commands
	Procedural Commands
	Functions
	Symbols and comparison operators
	Relational Statistical Operators

	Conditional Logic
	Displaying Changes
	Introduction to Events
	List of Events
	Keyboard Events
	Introduction to Methods
	Introduction to Properties
	Property List
	Introduction to Objects
	
			LostFocus 		MouseDown		MouseUp

	Class Properties
	Font (Class Property)
	
	
	
	
	
	Type
	Details
	Example
	Type
	Details
	Type
	Details
	Example
	Type
	Details
	Type
	Details
	Example
	Type
	Details
	Example
	Type
	Details
	Example

	Color (Class Property)
	
	Red
	
	
	
	Type
	Details:
	Example
	Type
	Details:
	Example
	Type
	Details:
	Example

	Fill (Class Property)
	
	Hatch

	Border (Class Property)
	3D Class Properties
	
	HighShade 	RimShine
	
	
	
	Type
	Details:
	Example
	Type
	Details:
	Example
	Type
	Details:
	Example

	Shine (Class Property)
	
	
	
	
	
	Type
	Details:
	Example
	Type
	Details:
	Example
	Type
	Details:
	Example

	Shade (Class Property)
	
	
	
	
	
	Type
	Details:
	Example
	Type
	Details:
	Example
	Type
	Details:
	Example

	Rect (Class Property)
	RectBorder (Class Property)
	
	WidthX

	RectFill (Class Property)
	
	Style

	ScrollBorder(Class Property)
	ScrollFill(Class Property)
	Child(Class Property)
	Next(Class Property)
	Prev(Class Property)
	Example Scripts: Input Validation with PostEdit
	Example Scripts: ValueLoaded Event
	Example Scripts: Report Totals
	Example Scripts: Realtime Data Processing
	Example Scripts: Conditional Subform Display
	Additions in 6.5 OML
	New Toolbar Icons
	Enter Key and Button Focus
	Bold Pick Lists
	Alphabetical Command List
	Index

